如图,AB=AC,点D、E分别在AC、AB上,AG⊥BD,AF⊥CE、垂足分别为G、F,且AG=AF.求证:AD=AE.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:09:37
如图,AB=AC,点D、E分别在AC、AB上,AG⊥BD,AF⊥CE、垂足分别为G、F,且AG=AF.求证:AD=AE.
证明:∵AG⊥BD,AF⊥CE,
∴△AGB和△AFC是直角三角形,
∵在Rt△AGB和Rt△AFC中,
AB=AC
AG=AF,
∴Rt△AGB≌Rt△AFC(HL).
∴∠BAG=∠CAF.
又∵∠BAG=∠EAF+∠FAG,
∠CAF=∠DAG+∠FAG;
∴∠EAF=∠DAG.
在△AFE和△AGD中,
∠AFE=∠AGD
AF=AG
∠EAF=∠DAG,
∴△AFE≌△AGD(ASA).
∴AD=AE.
∴△AGB和△AFC是直角三角形,
∵在Rt△AGB和Rt△AFC中,
AB=AC
AG=AF,
∴Rt△AGB≌Rt△AFC(HL).
∴∠BAG=∠CAF.
又∵∠BAG=∠EAF+∠FAG,
∠CAF=∠DAG+∠FAG;
∴∠EAF=∠DAG.
在△AFE和△AGD中,
∠AFE=∠AGD
AF=AG
∠EAF=∠DAG,
∴△AFE≌△AGD(ASA).
∴AD=AE.
如图,AB=AC,点D、E分别在AC、AB上,AG⊥BD,AF⊥CE、垂足分别为G、F,且AG=AF.求证:AD=AE.
如图,AB=AC点D,E分别在AC,AB上,AG⊥BD于G,AF⊥CE于F,且AG=AF.求证:BD=CE
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG
如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形
如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62
如图,已知A,B,C,为圆O上三点,D,E分别为弧AB,弧AC的中点,连DE,分别交AB,AC于点F,G求证:AF=AG
如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.
如图 在等边三角形abc中,D,E分别为AB,AC边上的两个动点且总使AD=BE,AE与CD交于点F,AG⊥CD于点G
如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,BD与AE,AF分别相交于点G,H,且AG=AH.求证
2、如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=
如图,AB=AC,∠ABC=∠ACB,CE,BD是三角形ABC的中线,AG⊥CE于G,AF⊥BD于F,求证:AG=AF
如图,已知D,E,F分别在△ABC边BC,AB,AC上.且DE‖AF且DE=AF.G在FD的延长线上,DG=DF,则AG