将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:36:44
将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.
(1)求证:四边形ABCD是菱形;
(2)如果两张矩形纸片的长都是8,宽都是2.那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.
(1)求证:四边形ABCD是菱形;
(2)如果两张矩形纸片的长都是8,宽都是2.那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.
(1)证明:如图,∵AD∥BC,DC∥AB,
∴四边形ABCD是平行四边形.
分别过点A、D作AE⊥BC于E,DF⊥AB于F.
∵两张矩形纸片的宽度相等,
∴AE=DF,
又∵AE•BC=DF•AB=S▱ABCD,
∴BC=AB,
∴▱ABCD是菱形;
(2)存在最小值和最大值.(7分)
①当∠DAB=90°时,菱形ABCD为正方形,周长最小值为8;(8分)
②当AC为矩形纸片的对角线时,设AB=x.如图,
在Rt△BCG中,BC2=CG2+BG2,
即x2=(8-x)2+22,x=
17
4.
∴周长最大值为
17
4×4=17.(9分)
∴四边形ABCD是平行四边形.
分别过点A、D作AE⊥BC于E,DF⊥AB于F.
∵两张矩形纸片的宽度相等,
∴AE=DF,
又∵AE•BC=DF•AB=S▱ABCD,
∴BC=AB,
∴▱ABCD是菱形;
(2)存在最小值和最大值.(7分)
①当∠DAB=90°时,菱形ABCD为正方形,周长最小值为8;(8分)
②当AC为矩形纸片的对角线时,设AB=x.如图,
在Rt△BCG中,BC2=CG2+BG2,
即x2=(8-x)2+22,x=
17
4.
∴周长最大值为
17
4×4=17.(9分)
将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.
将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD
将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.(1)求证:四边形ABCD是菱形
将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD1)求证:四边形ABCD是菱形;
同学们知道:将两张宽度相等的矩形纸片叠放在一起得到的重叠部分四边形ABCD为菱形(如图所示).
将两张宽度相等的矩形纸片叠放在一起得到如图9所示的四边形ABCD.(1)求证:四边形ABCD是菱形; (2)如
如图,将两张宽度相等的长方形纸条叠放在一起,得到四边形ABCD.
将两张宽度相等的长方形纸条叠放在一起,得到四边形ABCD.
将两张宽度相等的长方形纸条叠放在一起,得到四边形ABCD
将两张宽度的矩形纸片叠合在一起得到的四边形ABCD是菱形,你知道为什么嘛
将两张宽度相等的长方形纸条叠放在一起,得到四边形ABCD,若两张纸条的长都是8 .宽都是2那么菱形ABCD的周长是否存在
将两张宽度相等的长方形纸条叠在一起,得到四边形ABCD(1)求证:四边形ABCD是菱形