y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/21 00:41:26
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0 y^2+yz+z^2=a^2,yz≥0
z^2+zx+x^2=b^2,zx≥0
x^2+xy+y^2=c^2,xy≥0
yz+zx+xy=0,x=y=z=0
(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(
证明 (x+y+z)^2>3(xy+yz+zx)
已知xy:yz:zx=3:2:1,求①x:y:z ②x/yz:y/zx
y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a
x+y分之xy=5,y+z分之yz=2分之7,z+x分之zx=4,则xy+yz+zx分之xyz=?
XYZ满足XY/X+Y=-2,YZ/Y+Z=3/4,ZX/Z+X=-4/3,求XYZ/XY+YZ+ZX的值
已知三个数x,y,z,满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3,求(xyz)/(xy+yz+
已知xy:yz:zx=3:2:1,求(x+y):z的值
如果实数x,y,z满足x^2+y^2+z^2-(xy+yz+zx)=8,用A表示|x-y|,|y-z|,|z-x|中的最
已知x-y=5,z-y=10,X^2+Y^2+Z^2-XY-YZ-ZX
已知xy/x+y=3,yz/y+z=2,zx/z+x=1,求y的值
X+Y/XY=1,Y+Z/YZ=2,Z+X/ZX=3 求X的值