关于初等变换和矩阵请问 如果把一个矩阵化为阶梯型矩阵和最简阶梯型矩阵 是不是只能用行变换 过程中不能出现列变换 阶梯型矩
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 07:15:57
关于初等变换和矩阵
请问 如果把一个矩阵化为阶梯型矩阵和最简阶梯型矩阵 是不是只能用行变换 过程中不能出现列变换
阶梯型矩阵又叫行阶梯型矩阵 最简阶梯型矩阵又叫行最简矩阵 请问对么?
什么情况下既可以行变换也可以列变换
请问 如果把一个矩阵化为阶梯型矩阵和最简阶梯型矩阵 是不是只能用行变换 过程中不能出现列变换
阶梯型矩阵又叫行阶梯型矩阵 最简阶梯型矩阵又叫行最简矩阵 请问对么?
什么情况下既可以行变换也可以列变换
你可能还没搞清楚行列变化的原理.
所谓做一次行变换,就是左乘一个可逆阵,所谓列变换,就是右乘一个可逆阵.
举个例子:比如把A的第一行加到第二行,就是A左乘了一个可逆阵
1 0 0 ...0
1 1 0 ...0
0 0 1 ...0
...
0 0 0 ...1
现在来说你的问题:
其实不管是行变换还是列变换,单单从运算上讲,都可以把矩阵化为最简阶梯型,这个很好理解对吧.但是两者在效果上是有区别的.
为了说明问题,我们就假设原矩阵是A,最后的最简阶梯型是单位阵I吧.
如果你是只做行变换得到I,那就相当于A左乘了一系列可逆阵得到I,把那些可逆阵乘在一起记为P,则就是PA=I.
如果你既做了行变换又做了列变换得到I,那就相当于A既左乘了一系列可逆阵,又右乘了一系列可逆阵后得到I,把左乘的那些可逆阵乘在一起记为P,把右乘的那些可逆阵乘在一起记为Q,则就是PAQ=I.
下面问题来了,“你做行列变换的目的是什么?”
假设你是为了求A的逆矩阵,那么显然只能用行变换,得到PA=I,那么P就是A的逆矩阵.如果你在此过程中又做行变换又做列变换,就是PAQ=I,这个等式中是找不出A的逆矩阵的.
假设你是为了求A的秩,那么行列变换都能用.因为行列变化都不改换矩阵的秩,虽然也是PAQ=I,但这里的P、Q在求秩的时候对我没用,所以不用管它.
懂我的意思了吗?记住行变换就是左乘,列变换就是右乘.你就知道什么时候既可以行变换也可以列变换了.
所谓做一次行变换,就是左乘一个可逆阵,所谓列变换,就是右乘一个可逆阵.
举个例子:比如把A的第一行加到第二行,就是A左乘了一个可逆阵
1 0 0 ...0
1 1 0 ...0
0 0 1 ...0
...
0 0 0 ...1
现在来说你的问题:
其实不管是行变换还是列变换,单单从运算上讲,都可以把矩阵化为最简阶梯型,这个很好理解对吧.但是两者在效果上是有区别的.
为了说明问题,我们就假设原矩阵是A,最后的最简阶梯型是单位阵I吧.
如果你是只做行变换得到I,那就相当于A左乘了一系列可逆阵得到I,把那些可逆阵乘在一起记为P,则就是PA=I.
如果你既做了行变换又做了列变换得到I,那就相当于A既左乘了一系列可逆阵,又右乘了一系列可逆阵后得到I,把左乘的那些可逆阵乘在一起记为P,把右乘的那些可逆阵乘在一起记为Q,则就是PAQ=I.
下面问题来了,“你做行列变换的目的是什么?”
假设你是为了求A的逆矩阵,那么显然只能用行变换,得到PA=I,那么P就是A的逆矩阵.如果你在此过程中又做行变换又做列变换,就是PAQ=I,这个等式中是找不出A的逆矩阵的.
假设你是为了求A的秩,那么行列变换都能用.因为行列变化都不改换矩阵的秩,虽然也是PAQ=I,但这里的P、Q在求秩的时候对我没用,所以不用管它.
懂我的意思了吗?记住行变换就是左乘,列变换就是右乘.你就知道什么时候既可以行变换也可以列变换了.
关于初等变换和矩阵请问 如果把一个矩阵化为阶梯型矩阵和最简阶梯型矩阵 是不是只能用行变换 过程中不能出现列变换 阶梯型矩
关于阶梯型矩阵的问题把一个普通矩阵化为阶梯型矩阵可不可以同时使用行变换与列变换我们的书上没有介绍行阶梯型和列阶梯型,晕死
线性代数-阶梯型矩阵1.把任意一个矩阵A化成行阶梯型矩阵和简化行阶梯形矩阵的时候,能同时用初等行变换和初等列变换吗?用阶
利用行初等变换把这个矩阵分别化为行阶梯形矩阵和行最简形矩阵
用初等行变换把下列矩阵化为阶梯型矩阵,并求出它们的秩
矩阵变为行阶梯型能否用初等列变换
线性代数初等变换问题化成行阶梯型矩阵 只能用初等行变换吗?为什么不能用列变换?
什么是列阶梯形矩阵和列最简形矩阵?通过矩阵的初等列变换将矩阵化为列阶梯形矩阵的具体步骤?感激不尽~
矩阵初等行变换化阶梯形
[ 1 7 2 8] 用初等行变换将该矩阵化为约化阶梯型.
用初等行变换把下列矩阵化为简化阶梯形矩阵(需要写出详细步骤):
用初等行变换把下面矩阵化为行最简阶梯形矩阵