关于高中数学的穿根法能不能详细解释一下,举例讲解
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 17:50:05
关于高中数学的穿根法
能不能详细解释一下,举例讲解
能不能详细解释一下,举例讲解
第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0,并分解因式.(注意:一定要保证x前的系数为正数)
例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根.
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根.
例如:-1 1 2
第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根.
第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“0的根.
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根.
因为不等号为“>”则取数轴上方,穿根线以内的范围.即:-10化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根.
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根.
例如:-1 1 2
第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根.
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“0的根.
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根.
因为不等号为“>”则取数轴上方,穿跟线以内的范围.即:-1
例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根.
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根.
例如:-1 1 2
第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根.
第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“0的根.
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根.
因为不等号为“>”则取数轴上方,穿根线以内的范围.即:-10化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根.
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根.
例如:-1 1 2
第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根.
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“0的根.
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根.
因为不等号为“>”则取数轴上方,穿跟线以内的范围.即:-1