已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:06:49
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
2.若M是OA的中点,在X轴上取点E,抛物线的对称轴上取点F,求使四边形AMEF周长最小的点E,F,并求出此时四边形AMFE的周长
3,.在1的抛物线上是否存在点N,使得它与2中求得的点E所在直线EN恰好把三角形AEC分成面积相等的两部分?若存在,请你在图2中求出N的坐标 若不存在 请说明理由
2.若M是OA的中点,在X轴上取点E,抛物线的对称轴上取点F,求使四边形AMEF周长最小的点E,F,并求出此时四边形AMFE的周长
3,.在1的抛物线上是否存在点N,使得它与2中求得的点E所在直线EN恰好把三角形AEC分成面积相等的两部分?若存在,请你在图2中求出N的坐标 若不存在 请说明理由
1、由B、C坐标可设解析式为:Y=a(X--1)(X--5)=aX²+bX+c 展开比较系数并由A点坐标得c=3代人得:a=3/5,b=--18/5 所以解析式为:Y=3/5X²-18/5X+3,对称轴X=(1+5)/2=3 2、过A点作对称轴X=3的对称点A′(在抛物线上),过M点作X轴的对称点M′,连接A′M′,交X轴、对称轴的交点分别为E、F点则四边形AMEF的周长最小,这时的周长可求:A′的坐标为(6,3)M′点坐标为(0,-3/2)所以A′M′直线方程可求:y=3/4x--3/2所以E(2,0),F(3,3/4) 所以周长=AM+ME+EF+FA=AM+M′E+EF+FA′=AM+M′A′=3/2+√[(6+3/2)²+3²]=3/2+(√261)/2 3、一定存在:作AC中点D,作直线DE必交抛物线于点N,D点坐标由中点公式可求:D(5/2,3/2) E点坐标(2,0)求得DE直线方程:y=3x--6,由直线方程和抛物线方程组成方程组可求交点坐标
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.
已知抛物线y ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.
已知抛物线y=ax^2+bx+c,经过A(4,0)B(2,3)C(0,3)三点,(1)求抛物线的解析式以及对称轴
(1)已知抛物线y=ax2+bx+c经过三点A(-2,0),B(4,0),C(0,4)的解析式
如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式
二次函数Y=ax2平方+bx+c的图像经过A(1,-2) B(0,3) C(-1,0)三点,求出抛物线解析式?
已知抛物线y=-x2+bx+c经过点A(0,4),且抛物线的对称轴为直线x=2 求该抛物线的解析式
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.在线等速度
已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
已知抛物线经过A(-2,0)B(1,0)C(0,2)三点,求此抛物线的解析及对称轴