已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:47:08
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
(1)证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=
1
2∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.
(2)∠F=∠MCD,理由如下:
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
∴∠CAD=∠DAB=
1
2∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.
(2)∠F=∠MCD,理由如下:
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
已知,如图,AF平分∠BAC,BC⊥AF,垂足为点E,点D与点A关于点E对称,PB分别于线段CF,AF相交于点P,M求证
如图,已知AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别于线段CF、AF相交于点P、M
如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
已知:如图,AF平分角BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交与P,M.求证;
如图AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别于线段CF、AF交于点P、M.若∠BAC=2
已知如图AF平分角BAC,BC垂直于AF,垂足为E,点d于点a关于点e对称,pb分别与线段cf.af相交于pm
已知 如图 AF平分角BAC,BC垂直AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF
如图 AF平分角ABC BC垂直于AF,垂足为E,点D与点A关于E对称,PB分别与线段CF,AF相较于P,M.若角BAC
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,AE=ED,PB分别与线段CF,AF相交于点P,M,∠F=∠MCD求
如图,已知AF平分角BAC,D是AF上一点,过点P分别AB,AC做垂线PD,PE,垂足分别为D,E.连接DE.求证:AF
如图,正方形abcd中,E,F分别是边AD,cD上的点,DE=CF,AF与BE相交于o,DG⊥AF,垂足为G.①,求证a