数列{an}首项a1=1,前n项和Sn与an之间满足an=2Sn22Sn−1(n≥2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 21:20:06
数列{an}首项a1=1,前n项和Sn与an之间满足a
(1)∵当n≥2时,an=Sn−Sn−1=
2
S2n
2Sn−1,
整理得:Sn-1-Sn=2Sn⋅Sn-1,
由题意知Sn≠0,
∴
1
Sn−
1
Sn−1=2,
即{
1
Sn}是以
1
S1=
1
a1=1为首项,公差d=2的等差数列.
(2)∵{
1
Sn}是以
1
S1=
1
a1=1为首项,公差d=2的等差数列.
∴
1
Sn=1+2(n−1)=2n−1,
∴Sn=
1
2n−1,n∈N•.,
当n≥2时,an=Sn−Sn−1=
1
2n−1−
1
2(n−1)−1=−
2
(2n−1)(2n−3),
当n=1时,a1=S1=1不满足an,
∴an=
1,n=1
−
2
(2n−1)(2n−3),n≥2.
2
S2n
2Sn−1,
整理得:Sn-1-Sn=2Sn⋅Sn-1,
由题意知Sn≠0,
∴
1
Sn−
1
Sn−1=2,
即{
1
Sn}是以
1
S1=
1
a1=1为首项,公差d=2的等差数列.
(2)∵{
1
Sn}是以
1
S1=
1
a1=1为首项,公差d=2的等差数列.
∴
1
Sn=1+2(n−1)=2n−1,
∴Sn=
1
2n−1,n∈N•.,
当n≥2时,an=Sn−Sn−1=
1
2n−1−
1
2(n−1)−1=−
2
(2n−1)(2n−3),
当n=1时,a1=S1=1不满足an,
∴an=
1,n=1
−
2
(2n−1)(2n−3),n≥2.
数列{an}首项a1=1,前n项和Sn与an之间满足an=2Sn22Sn−1(n≥2)
数列an首项a1=1前n项和sn与an之间满足an=2Sn^2/(Sn-1)(n大于等于2)
数列{an}的首项a1=1,前n项和Sn与an之间满足an=2Sn^2/2Sn -1 (n>=2)
数列{an}首项a1=3通项an与前n项的Sn之间满足2an=SnS(n-1) (n>=2)
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
已知数列an的首项a1=3,通项an与前n项和sn之间满足2an=snsn-1(n大于等于2)
已知数列{an}的前N项和Sn与an之间满足a1=1,Sn=n的平方*an,求{an}
数列{an}的首项a1=1,前n项和Sn与an之间满足an=2Sn²/(2Sn-1),(n≥2).⑴求证:数列
已知数列{An}的首项A1=3,通项An与前n项Sn之间满足2An=Sn*Sn-1(n>2).n和n-1都是下标.求{A
已知数列{an}的首项a1=1,其前n项和Sn与an之间满足an=2Sn^2/{2(Sn)-1}(1)求数列{an}的通
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
数列{An}的首项A1=3,通项An 前n项和 Sn之间满足2An=Sn×Sn-1(n≥2,n∈N*) (1) 求证:数