BC是,圆0的直径,直线L是过C点的切线,N是圆0上一点,直线BN交L于点 M过N点,过N点 的切线
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:42:25
BC是,圆0的直径,直线L是过C点的切线,N是圆0上一点,直线BN交L于点 M过N点,过N点 的切线交L于点P,则PM/2=PC/2.,(2)把图1中的直线L向上平行移动,使之与圆心0相交,且与直线BN不交于BN两点,其它不变,用图2的圆把变化后的图形画出来并证明.3;说出变化规律;
则PM/2=PC/2
改为PM的平方=PC的平方
则PM/2=PC/2
改为PM的平方=PC的平方
如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM2=PC2.
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
.证明结论成立或说明不成立的理由:
(2)结论为PM2=PC1•PC2.
证明:连接ON,
∵PN是切线,O是圆心,
∴∠MNP+∠ONB=90°.
又∠ONB=∠B,BC⊥l,
∴∠NMP+∠B=∠BMC3+∠B=90°,
∴∠MNP=∠NMP,
∴PM=PN.
由PM=PN,
由切割线定理得
PN2=PC1•PC2,
∴PM2=PC1•PC2.
解此题要想到切线的性质,切割线定理,
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
.证明结论成立或说明不成立的理由:
(2)结论为PM2=PC1•PC2.
证明:连接ON,
∵PN是切线,O是圆心,
∴∠MNP+∠ONB=90°.
又∠ONB=∠B,BC⊥l,
∴∠NMP+∠B=∠BMC3+∠B=90°,
∴∠MNP=∠NMP,
∴PM=PN.
由PM=PN,
由切割线定理得
PN2=PC1•PC2,
∴PM2=PC1•PC2.
解此题要想到切线的性质,切割线定理,
BC是,圆0的直径,直线L是过C点的切线,N是圆0上一点,直线BN交L于点 M过N点,过N点 的切线
如图AB是圆O的直径M是线段OA上一点,过M作AB的垂线交AC于点N,交BC的延长线与点E,直线CF交EN于点F
P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在
BD的圆O的直径,OA垂直OB,M是劣弧AB弧上一点,过M点作圆O的切线MP交OA的延长线于P点,MD与OA交与N点.
已知A,B,C是直线l上的三点,且|AB|=|BC|=6,圆O切直线l1于点A,有过B,C作圆O异于l的两切线,切点分为
直线与圆:如图,BD 是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与
已知点M是△ABC的中线AD上的一点,直线BM交边AC于点N,且AB是△NBC的外接圆的切线,设BC/BN=k,试求BM
已知A.B.C是直线l上的三点,且AB=BC=6,圆O’切直线l于点A,又过B.C作圆O’异于l的两切线,设这两切线交于
如图,AB是圆O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点N,交BC的延
已知两曲线A、B外切于一点O,过O作曲线A的切线l 求证:直线l是曲线B过O点的切线
过点P(-根号3,0)作直线l交椭圆11X^2+Y^2=9于M、N,问L的斜率为多大时,以M,N为直径的圆过原点
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两