求解抛物线题目已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+P
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 14:33:26
求解抛物线题目
已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+PF的绝对值(F为C的焦点)有最小值;
(2)试在抛物线C上找一点Q,试QF-QB的绝对值(F为C的焦点)有最大值.
已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+PF的绝对值(F为C的焦点)有最小值;
(2)试在抛物线C上找一点Q,试QF-QB的绝对值(F为C的焦点)有最大值.
(1)作AM垂直于准线于M,与抛物线交于点P,则AP+PF的绝对值(F为C的焦点)有最小值
P(x,2)
4x=4
x=1
P(1,2)
最小值为:3+1=4
(2)连结FB,与抛物线交于点Q,则QF-QB的绝对值(F为C的焦点)有最大值
FB方程为:y=7/3*(x-1)
与y2=4x联解
求得P的坐标
再求出QF-QB的绝对值(F为C的焦点)有最大值
P(x,2)
4x=4
x=1
P(1,2)
最小值为:3+1=4
(2)连结FB,与抛物线交于点Q,则QF-QB的绝对值(F为C的焦点)有最大值
FB方程为:y=7/3*(x-1)
与y2=4x联解
求得P的坐标
再求出QF-QB的绝对值(F为C的焦点)有最大值
求解抛物线题目已知两定点A(3,2)B(4,7)及抛物线C的方程是y2=4x. (1)试在抛物线C上找一点P,使AP+P
已知抛物线y平方=4x的焦点为f,定点a(3,2),在抛物线上找一点p,使pa+pf的值最小,则p点坐标是?
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点
已知抛物线y2=x+1,定点A(3,1),B为抛物线上任意一点,点P在线段AB上,且有BP:PA=1:2,当点B在抛物线
已知A.B是抛物线y2=4x上的两点,P(1,2).
已知抛物线x^2=4y及定点P(0,8),A、B是抛物线上的两点,且向量AP=aPB(a>0),
已知抛物线C:y2=4x的焦点为F,过点P(-1,0)的直线l与抛物线C相交于A,B两点(│AP│>│BP│),若2│B
已知抛物线x^2=4y,定点A(-3,3),F(0,1),P为抛物线上的一点,则|PA|+|PF|的最小值是?
已知定点A(-2,0),动点P在抛物线y=1/2(x-2)^2上,则AP的中点的轨迹方程是
已知如图,抛物线y=1/2x^2-x-3/2交坐标轴于A、B、C三点,D是抛物线的顶点,在抛物线上是否存在一点P,
已知抛物线x=y^2-1,定点A(3,1),B为抛物线上任一点,点P在线段AB上,且有BP/PA=1/2,当点B在抛物线
(2013•闸北区三模)已知抛物线C:x2=2py(p>0)的焦点为F,点A(a,4)为抛物线C上的定点,点P为抛物线C