作业帮 > 数学 > 作业

求几个有用的数学定理公式

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:17:04
求几个有用的数学定理公式
求初中高中的教科书中没有的,最好是解数学竞赛题目时用用的数学定理公式,如梅涅劳斯定理和塞瓦定理 蝴蝶定理 一元三次方程的求根公式等 好的加50分
求几个有用的数学定理公式
蝴蝶定理是平面几何的古典结果.
蝴蝶定理最先是作为一个征求证明的问题.由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点. 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法.至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA. 这里介绍一种较为简便的初等数学证法. 证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM.SM.MT. ∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC, ∴DS/BT=DM/BM又∵∠D=∠B ∴△MSD∽△MTB,∠MSD=∠MTB ∴∠MSX=∠MTY;又∵O,S,X,M与O,T.Y.M均是四点共圆, ∴∠XOM=∠YOM ∵OM⊥PQ∴XM=YM
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1.
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线.利用这个逆定理,可以判断三点共线.
塞瓦定理
设O是△ABC内任意一点,
AB、BO、CO分别交对边于D、E、F,则 BD/DC*CE/EA*AF/FB=1
证法简介
(Ⅰ)本题可利用梅内劳斯定理证明:
∵△ADC被直线BOE所截,
∴ CB/BD*DO/OA*AE/EC=1 ①
而由△ABD被直线COF所截,∴ BC/CD*DO/OA*AF/DF=1②
①÷②:即得:BD/DC*CE/EA*AF/FB=1
(Ⅱ)也可以利用面积关系证明
∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③
同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤
③×④×⑤得BD/DC*CE/EA*AF/FB=1
一元三次方程是型如ax^3+bx^2+cx+d+0的标准型
其解法如下
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型.
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式.归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和.归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B.方法如下:
(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为
x^3=(A+B)+3(AB)^(1/3)x,移项可得
(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得
(6)A+B=-q,AB=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将A,B代入x=A^(1/3)+B^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
数学:http://baike.baidu.com/search/cn=%CA%FD%D1%A7
定理:http://baike.baidu.com/search/cn=%B6%A8%C0%ED