作业帮 > 数学 > 作业

已知椭圆的中心在坐标原点,长轴在X轴上,一个顶点是抛物线y平方=16x的焦点,离心率为跟3/2,求椭圆方程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/09/21 21:43:37
已知椭圆的中心在坐标原点,长轴在X轴上,一个顶点是抛物线y平方=16x的焦点,离心率为跟3/2,求椭圆方程
已知椭圆的中心在坐标原点,长轴在X轴上,一个顶点是抛物线y平方=16x的焦点,离心率为跟3/2,(1)求椭圆的方程(2)求以点(2,-1)为中点的玄AB所在的直线方程,
已知椭圆的中心在坐标原点,长轴在X轴上,一个顶点是抛物线y平方=16x的焦点,离心率为跟3/2,求椭圆方程
(1)∵抛物线y^2=16x的焦点为(4,0)
∴椭圆的长半轴长a=4
又∵椭圆离心率e=c/a=√3/2
∴c=2√3,b^2=4
所以椭圆的方程为x^2/16+y^2/4=1 【长轴在x轴,焦点也在x轴】
(2)如果直线斜率不存在的时候中点在x轴,所以直线一定有斜率.
设A的坐标为(x1,y1),B的坐标为(x2,y2),则有x1+x2=4,y1+y2=-2
则有x1^2/16+y1^2/4=1 -------①
x2^2/16+y2^2/4=1 -------②
①-②得(x1^2-x2^2)/16+(y1^2-y2^2)/4=0
整理得(x1+x2)(x1-x2)=-4(y1+y2)(y1-y2)
则AB直线斜率k=(y1-y2)/(x1-x2)=(x1+x2)/[-4(y1+y2)]=1/2
又直线经过(2,-1),
所以直线方程为y=1/2x-2 【这就是传说中的点差法】
已知椭圆的中心在坐标原点,长轴在X轴上,一个顶点是抛物线y平方=16x的焦点,离心率为跟3/2,求椭圆方程 已知中心在坐标原点,焦点F1、F2在x轴上的椭圆C离心率为(√3)/2,抛物线x^2=4y的焦点是椭圆的一个顶点. 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3/2,抛物线X^2=4y的焦点是椭圆C的一个顶点 ( 已知中心在坐标原点,焦点F1、F2再x轴上的椭圆C的离心率为根号3、2,抛物线X^2=4y的焦点是椭圆C的一个顶点 已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线Y=1/4X2的焦点,离心率为(2根号5)/5!求椭圆的标 已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线y²=8x的焦点,M的离心率e=1/2 已知中心在原点,焦点在x轴上的椭圆c的离心率1/2,一个顶点是抛物线X2=-4根号下3y的焦点.(1)求椭圆的标... 数学椭圆方程!已知椭圆c的中点在原点,焦点在x轴上,它的一个顶点恰好是抛物线x平方=4y的焦点,离心率等于2根号5/5. 椭圆C的中心在坐标原点,焦点在y轴上,它的一个顶点恰好为抛物线x=1/4y的平方的焦点,离心虑为二分之根三.求C 已知椭圆E的中心在原点,长轴的一个端点是抛物线y^2=4√5x的焦点,离心率是√6/3,求椭圆E的方程 已知椭圆中心在坐标原点,焦点在x轴上,短轴长为2√2离心率为√6÷3 1 求椭圆的方程 已知椭圆C的中心在原点,焦点在x轴上,离心率e=1/2,一个顶点的坐标为(0,根号3)