设S={1,2,3},定义SXS上的等价关系,R={(a,b),(c,d)|(a,b)属于SXS,(c,d)属于SXS,
设S={1,2,3},定义SXS上的等价关系,R={(a,b),(c,d)|(a,b)属于SXS,(c,d)属于SXS,
设S={1,2,3,4},并设A=SxS,在A上定义关系R为:R并且当a+b=c+d,证明R是等价关系
设A=(1,2,3)R为AxA上的等价关系,且属于R.当且仅当a+b=c+d 问:(1)设I为AxA上的恒等关系,求R-
假设A是sXn矩阵.证明:存在半正定sXs Hermite矩阵B,使得A*(A^H)=B^2 .(A^H) 为A的共轭转
设R是N*N上的关系,定义如下:(A,B)R(C,D)AD=BC,证明R是等价关
设A={A,B,C,D}R=IAU{,,,}是A上的等价关系,求商集A/R
定义自然数集的笛卡儿乘积上的关系R:(a,b)R(c,d) 当且仅当a+d=b+c 证明这是等价
离散题:设A={1234},R为A*A上的二元关系,对存在属于AXA,定义R推出a+b=c+d
设集合A={a,b,c,d,e,f},A上的等价关系R={(a,b)(a,c)(b,a)(b,c)(c,a)(c,b)(
设R是A上的自反关系,且当(a,b)属于R和(b,c)属于R时,必有(c,a)属于R,证明R是A上的等价关系
等价关系设A={a,b,c,d,e,f}上的划分为{{ a,c,f },{ b,d },{ e }},试求此划分所对应的
离散数学题:设A={a,b,c,d,e}上有一个划分S={{a,b,c}{d,e}},试由S确定A上的一个等价关系.