已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:10:15
已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”.请直接应用上述信息解决下列问题:
(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.
(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.
(1)当点P在△ABC内时,结论h1+h2+h3=h仍然成立.
理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2+h3=AN+MN=AM=h,
即h1+h2+h3=h.
(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.
理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2-h3=AN-MN=AM=h,
即h1+h2-h3=h.
理由如下:过点P作BC的平行线,交AB于G,交AC于H,交AM于N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2+h3=AN+MN=AM=h,
即h1+h2+h3=h.
(2)当点P在△ABC外时,结论h1+h2+h3=h不成立.此时,它们的关系是h1+h2-h3=h.
理由如下:过点P作BC的平行线,与AB、AC、AM分别相交于G、H、N,则可得结论h1+h2=AN.
∵四边形MNPF是矩形,
∴PF=MN,即h3=MN.
∴h1+h2-h3=AN-MN=AM=h,
即h1+h2-h3=h.
已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一
已知:等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3.,△ABC的高为h.若点P在
已知等边三角形ABC 和点P,设点P到△ABC 三边的AB,AC,BC的距离分别是h1, h2, h3, △ABC的高为
初二数学题:已知等边三角形ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3
如图所示,已知等边三角形ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h
如图,已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC(或其延长线)的距离分别为h1、h2、h3,△ABC的
已知等边三角形ABC和点P,设点P到三角形三边AB.AC.BC的距离分别是h1,h2,h3,三角形ABC的高为h,若点P
一道数学题:已知等边三角形ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为
已知等边三角形ABC和点P,设点P到三角形ABC得三边AB、AC、BC的距离分别是h1、h2、h3,三角形ABC的高为h
已知:如图5,在等边三角形ABC和点P,设点P到三角形ABC三边AB;AC;BC(或其他延长线的距离分别为h1;h2;h
已知等边三角形ABC和点P,设点P到三角形ABC边的AB AC BC 的距离分别是h1 h2 h3,
如图所示,已知P是正三角形内的一点,它到△ABC的三边AB,BC,AC的距离分别为h1,h2,h3,△ABC的高AM=h