作业帮 > 数学 > 作业

一、已知cos(π/4+x)=3/5,17π/12

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:50:26
一、已知cos(π/4+x)=3/5,17π/12
一、已知cos(π/4+x)=3/5,17π/12
一:17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
二:y=1+sin(2x)+2cos^2(x)
=1+sin(2x)+1+cos(2x)
=2+sin(2x)+cos(2x)
=2+√2sin(2x+π/4)
所以周期为π
(2) -π/2+2kπ