高数求导(dy/dx)习题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:28:43
高数求导(dy/dx)习题
设由下列方程确定y是x的函数,求dy/dx
(1)cos(x^2 +y)=x
求下列参数方程所确定的函数y=f(x)的导数dy/dx
(1)x=(e^t)sint,y=(e^t)cost.
(1)-[1+2xsin(x^2 +y)]/[sin(x^2 +y)]
(2)cost-sint/sint+cost
设由下列方程确定y是x的函数,求dy/dx
(1)cos(x^2 +y)=x
求下列参数方程所确定的函数y=f(x)的导数dy/dx
(1)x=(e^t)sint,y=(e^t)cost.
(1)-[1+2xsin(x^2 +y)]/[sin(x^2 +y)]
(2)cost-sint/sint+cost
(1)cos(x^2 +y)=x
-sin(x^2 + y)[2x + dy/dx]=1
dy/dx = -2x - csc(x^2 + y)
= -[1+2xsin(x^2 +y)]/[sin(x^2 +y)]
(2)x=(e^t)sint,y=(e^t)cost.
dy = [(e^t)cost - (e^t)sint]dt
dx = [(e^t)sint + (e^t)cost]dt
两式相除,得:
dy/dx = [(e^t)cost - (e^t)sint]/[(e^t)sint + (e^t)cost]
= [cost - sint]/[sint + cost]
或继续消去参数:
= [1 - tant]/[tant + 1]
= [1 - x/y]/[x/y + 1]
= [y - x]/[x + y]
-sin(x^2 + y)[2x + dy/dx]=1
dy/dx = -2x - csc(x^2 + y)
= -[1+2xsin(x^2 +y)]/[sin(x^2 +y)]
(2)x=(e^t)sint,y=(e^t)cost.
dy = [(e^t)cost - (e^t)sint]dt
dx = [(e^t)sint + (e^t)cost]dt
两式相除,得:
dy/dx = [(e^t)cost - (e^t)sint]/[(e^t)sint + (e^t)cost]
= [cost - sint]/[sint + cost]
或继续消去参数:
= [1 - tant]/[tant + 1]
= [1 - x/y]/[x/y + 1]
= [y - x]/[x + y]
高数求导(dy/dx)习题
用参数方程求导数dy/dx
高数求导习题2道1.求由下列参数方程所确定的函数y=f(x)的导数dy/dx(1)x=2t,y=t^2(2)x=te^-
高数复合函数求导 y=ln cos e^x,求dy/dx
高数 dy/dx相当于函数对自变量x(把x看成自变量)求导,dx/dy相当于函数对自变量y(把y看成自变量)求导,那么可
高数求导数dy.
dy/dx 求导(急急急)
求导dy除以dx
求导dy/dx
高数符号d自己在家看高数书,复合函数求导是dy/dx=dy/du *du/dx这个符号d是什么意思,是表示△吗?
高数求导数y=e^ty+x,t^2+y^2-x^2=1,求dy/dx
高数!若y=lncos(arctan x),则dy/dx=多少,是不是就是求f'(x)值?这个求导感觉有点复杂