作业帮 > 数学 > 作业

过点a(4,0)作直线L与圆O:x^2+y^2=4相交于m,n不同的两点,求弦mn的中点p的轨迹方程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:49:52
过点a(4,0)作直线L与圆O:x^2+y^2=4相交于m,n不同的两点,求弦mn的中点p的轨迹方程
过点a(4,0)作直线L与圆O:x^2+y^2=4相交于m,n不同的两点,求弦mn的中点p的轨迹方程
连OP,∵ 过点A(4,0)作直线L与圆O:x^2+y^2=4相交于m,n不同的两点,P点是M,N中点∴OP⊥AP\x0d在Rt△OPA中.OP^+PA^=OA^\x0d其中OP^=X^+Y^.PA^=(X-4)+Y^ OA^=16\x0d∴X^+Y^+(X-4)+Y^=16\x0d∴弦mn的中点p的轨迹方程为:圆心(2,0),半径为2的圆.