椭圆x²/4+y²/3=1的左右焦点分别为F1F2过椭圆的右焦点F2作一倾斜角为π/4的直线交椭圆于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:49:47
椭圆x²/4+y²/3=1的左右焦点分别为F1F2过椭圆的右焦点F2作一倾斜角为π/4的直线交椭圆于AB两点
①弦AB的长②△AF1B的面积③左焦点F1到弦AB中点的距离
①弦AB的长②△AF1B的面积③左焦点F1到弦AB中点的距离
①由题意得 c=√a^2-b^2=1 ∴F2(1,0) k=tanπ/4=1
∴直线方程为y-0=1(x-1) 即y=x-1
将y=x-1代入椭圆x²/4+y²/3=1中 化简整理得7x^2-8x-8=0
所以|AB|=√1+1^2*√(8/7)^2-4*-8/7=24/7
②易求得F1到直线的距离d=|-1-1|/√1^2+(-1)^2=√2
∴S△AF1B=1/2*24/7*√2=12√2/7
③由7x^2-8x-8=0 得x1+x2=8/7 所以弦AB中点的横坐标为(x1+x2)/2=4/7
再由y1=x1-1 y2=x2-1 得y1+y2=x1+x2-2=-6/7
所以弦AB中点的纵坐标为(y1+y2)/2=-3/7
所以AB的中点坐标为(4/7,-3/7)
∴F1到AB中点的距离d=√(-1-4/7)^2+(0-(-3/7))^2=√130/7
∴直线方程为y-0=1(x-1) 即y=x-1
将y=x-1代入椭圆x²/4+y²/3=1中 化简整理得7x^2-8x-8=0
所以|AB|=√1+1^2*√(8/7)^2-4*-8/7=24/7
②易求得F1到直线的距离d=|-1-1|/√1^2+(-1)^2=√2
∴S△AF1B=1/2*24/7*√2=12√2/7
③由7x^2-8x-8=0 得x1+x2=8/7 所以弦AB中点的横坐标为(x1+x2)/2=4/7
再由y1=x1-1 y2=x2-1 得y1+y2=x1+x2-2=-6/7
所以弦AB中点的纵坐标为(y1+y2)/2=-3/7
所以AB的中点坐标为(4/7,-3/7)
∴F1到AB中点的距离d=√(-1-4/7)^2+(0-(-3/7))^2=√130/7
椭圆x²/4+y²/3=1的左右焦点分别为F1F2过椭圆的右焦点F2作一倾斜角为π/4的直线交椭圆于
已知椭圆x^2/4 +y^2/3=1的左、右焦点分别为F1、F2,过F1作倾斜角为45°的直线交椭圆于A、B两点,求AB
已知椭圆(x^2)/3+(y^2)/2=1的左,右焦点分别为F1,F2,过F1的直线l倾斜角为π/4,且与椭圆交于A,B
已知椭圆Cx^2/9+y^2/8=1的左右两个焦点分别为F1F2,过F1作一直线交椭圆C于AB两点
已知椭圆x^2/4+y^2/3=1的左右焦点分别为F1F2,一条直线L经过F1与椭圆交于A,B两点.
关于解析几何 椭圆已知椭圆方程x^2/3+y^2=1,若F1,F2为椭圆的左、右两个焦点,过F2作直线交椭圆于P、Q,求
若过椭圆x平方/3+y平方=1的中心作斜率为k的直线交椭圆于m,n两点,且椭圆的左右焦点分别为F1,F2,若以m为圆心
已知椭圆x^2/4+y^2/3=1,过椭圆的右焦点作一条直线L交椭圆于A,B,又P为椭圆的右顶点,若三角形PAB的面积为
已知F1F2是椭圆3X²+4Y²=12的两个焦点,过点F1作倾斜角为45°的直线交椭圆于AB两点,求
椭圆X^/4+Y^/2=1的左右焦点分别为F1F2,直线L过F2与椭圆相交于AB两点,O为坐标原点,以AB为直径的原恰好
已知点F1,F2分别为x^2/2+y^2=1的左右焦点,过F2作倾斜角为45°的直线交椭圆于AB两点,求F1AB面积
已知一个椭圆的方程:4X^2+9Y^2=36,若该椭圆的右焦点为F2,且经过左焦点F1且倾斜角为α的直线M与椭圆交于A,