已知向量a≠向量b,|b|≠1,对任意t属于R,恒有|a-tb|≥|a-b|,求向量a,b应满足什么条件?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 09:25:31
已知向量a≠向量b,|b|≠1,对任意t属于R,恒有|a-tb|≥|a-b|,求向量a,b应满足什么条件?
如题
如题
| a-tb |≥| a-b |,
平方得:a^2-2ta•b+t^2b^2≥a^2-2a•b+b^2,
-2ta•b+t^2b^2≥-2a•b+b^2,
t^2b^2-2ta•b+2a•b-b^2≥0,
这是关于t的二次不等式,恒成立,
只需b^2>0,△=4(a•b)^2-4 b^2 (2a•b- b^2)≤0,
(a•b)^2-2 b^2*a•b+ b^4≤0,
(a•b-b^2)^2≤0,
所以a•b-b^2=0
∴b•(a-b)=a•b- b^2=0,
所以向量b垂直于向量(a-b).
平方得:a^2-2ta•b+t^2b^2≥a^2-2a•b+b^2,
-2ta•b+t^2b^2≥-2a•b+b^2,
t^2b^2-2ta•b+2a•b-b^2≥0,
这是关于t的二次不等式,恒成立,
只需b^2>0,△=4(a•b)^2-4 b^2 (2a•b- b^2)≤0,
(a•b)^2-2 b^2*a•b+ b^4≤0,
(a•b-b^2)^2≤0,
所以a•b-b^2=0
∴b•(a-b)=a•b- b^2=0,
所以向量b垂直于向量(a-b).
已知向量a≠向量b,|b|≠1,对任意t属于R,恒有|a-tb|≥|a-b|,求向量a,b应满足什么条件?
已知平面向量|a|≠|b|,|b|=1,对任意t∈R,恒有|a-tb|≥|a-b|,求向量a,b应满足什么条件
.已知向量a≠向量b,向量e的模=1,对任意t∈R,恒有(向量a-t向量e)的模≥(向量a-向量e)等模,为什么向量e垂
已知向量a≠e,|e|=1满足:对任意t∈R,恒有|a-te|≥|a-e|,则有什么向量垂直 A.a和b B.a和a-e
已知向量a不等于b ,|b|不等于1,对任意t属于R,恒有|a-tb|大等于|a-b| .现给出下列四个结论:①a//b
当向量a,向量b满足什么条件时,有(向量a+向量b)⊥(向量a-向量b)
已知向量a≠e,|e|=1,对任意t属于R,恒有|a-te|≥|a-e|,则 A.a⊥e B.a⊥(a-e) C.e⊥(
已知非零向量a,b,且a//b,向量|a|=2,向量|b|=1,求|a+tb|取最小值时实数t的值
设向量A=(cosa,sina),向量B=(sina,cosa).若对任意的a∈R,总有|A-TB|>=|A-B|,求实
已知向量a=(-1,2)向量b=(1,1)t∈R.①求向量a和向量b夹角的余弦值②求|a+tb|的最小值及相应的t值
已知a b 是两个非零已知向量,当a+tb(t属于R)的模取最小值时,求t的值以及证明b与a+tb(t属于R)垂直
已知向量A 向量B是不平行的非零向量 t属于R 则当(向量a+t向量b)的模取最小值时 向量B 与(向量a+t向量b)的