阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 23:31:53
阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b |
a |
(1)令4x2+8x-1=0,
∵a=4,b=8,c=-1,b2-4ac=64+16=80>0,
∴x1=
−2+
5
2,x2=
−2−
5
2,
则4x2+8x-1=4(x-
−2+
5
2)(x-
−2−
5
2);
(2)二次三项式2x2-4x+7在实数范围内不能利用上面的方法分解因式,理由如下:
令2x2-4x+7=0,
∵b2-4ac=(-4)2-56=-40<0,
∴此方程无解,
则此二次三项式不能用上面的方法分解因式;
(3)令mx2-2(m+1)x+(m+1)(1-m)=0,
由此二次三项式能用上面的方法分解因式,即有解,
∴b2-4ac=4(m+1)2-4m(m+1)(1-m)≥0,
化简得:(m+1)[4(m+1)+4m(m-1)]≥0,即4(m+1)(m2+1)≥0,
∵m2+1≥1>0,∴m+1≥0,解得m≥-1,又m≠0,
则m≥-1且m≠0时,此二次三项式能用上面的方法分解因式.
∵a=4,b=8,c=-1,b2-4ac=64+16=80>0,
∴x1=
−2+
5
2,x2=
−2−
5
2,
则4x2+8x-1=4(x-
−2+
5
2)(x-
−2−
5
2);
(2)二次三项式2x2-4x+7在实数范围内不能利用上面的方法分解因式,理由如下:
令2x2-4x+7=0,
∵b2-4ac=(-4)2-56=-40<0,
∴此方程无解,
则此二次三项式不能用上面的方法分解因式;
(3)令mx2-2(m+1)x+(m+1)(1-m)=0,
由此二次三项式能用上面的方法分解因式,即有解,
∴b2-4ac=4(m+1)2-4m(m+1)(1-m)≥0,
化简得:(m+1)[4(m+1)+4m(m-1)]≥0,即4(m+1)(m2+1)≥0,
∵m2+1≥1>0,∴m+1≥0,解得m≥-1,又m≠0,
则m≥-1且m≠0时,此二次三项式能用上面的方法分解因式.
阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+
阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
阅读材料:若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2
阅读材料:设一元二次方程ax2+bx+c=0的两个根为x1,x2,则两根分别与方程系数之间有如下关系:x1+x2=-ba
阅读下列材料:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1,x2,则x1+x2=-ba,x
阅读材料:设一元二次方程ax²+bx+c=0的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
阅读材料:若一元二次方程ax2+bx+c=0的两个实数根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=−ba
设一元二次方程ax*X +bx+c=0(a不等于0)的两个根为x1,x2.则两个根与方程系数之间如下关系:
阅读材料:如果x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么,x
阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么有x
(2011•西城区二模)阅读下列材料:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1,x2,
阅读材料:设关于x的一元二次方程axˇ2+bx+c=0(a,b,c为常数,且a≠0)的两个实数根为x1,x2,则两根与方