作业帮 > 数学 > 作业

已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:59:57
已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关于x的方程kx^2-(2k-m)x+k-m^2+5m-10=0有整数根?若存在,求k的值,若不存在,请说明理由
我们刚学 不太懂
已知关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个不相等的实数根中有一根为0,是否存在非正整数k,使得关
(1)关于x的方程x^2-2(m+1)x+m^2-2m-3=0的两个解之积为x=m^2-2m-3=(m-3)(m+1)
因为有一根为0,所以(m-3)(m+1)=即m=3或m=-1
又因为△=[2(m+1)]^2-4(m^2-2m-3)=16m+14>0即m>-14/16>-1
所以m=3
(2)将m=3代入方程kx2-(2k-m)x+k-m2+5m-10=0;
即kx2-(2k-3)x+k-32+5*3-10=0;化简方程得
kx2-(2k-3)x+k-4=0;若有根,则Δ>=0;
Δ=(2k-3)2-4*k(k-4)=4k+9>=0;
k>=-9/4;而他两根分别为
x=[(2k-3)±(4k+9)]/2k;化简
x1=1+3/k,x2=-1-6/k;如果两根要有整数
只能使k=6