设函数y=f(x)有f'(x.),则当Δˇx→0f(x)在x=xˇo处的微分dy是
设函数y=f(x)有f'(x.),则当Δˇx→0f(x)在x=xˇo处的微分dy是
已知f'(x0)=2.则当Δ趋近于0时,函数y=f(x)在x=x0处的微分dy是()
设函数y=f(x)在点X0处可微,且在点X0处的增量是△y 微分为dy 那么当△x趋于0 的时候 dy-△y 是△x 的
若函数y=f(x)有f'(x0)=2,则当戴尔他x趋向于0时,该函数在x0处的微分dy是与戴尔他x同阶的无穷小.
设函数y=f(x)在点xo处可导,当自变量x由xo增加到xo+△x时,记△y为f(x)的增量,dy为f(x)微分
设函数y=f(x)是定义在R上的函数,且f(x)>0,对于任意的实数x,y,都有f(x+y)=f(x)+f(y),当x>
设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
设f(x)是定义在R上的函数,对任意x,y∈R,都有f(x+y)=f(x)×f(y),当且只当x>0时,0<f(x)<1
设f(x)是定义在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且当x>0时,f(x)>1.证明
函数的基本性质 设f(x)是定义在R上的函数,对于任意x,y∈R,恒有f(x+y)=f(x) X f(y),当x大于0时
设函数f(x)对任意实数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)