两角和差公式sinx-siny=2sin[(x-y)/2]cos[(x+y)/2]推导.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:53:01
两角和差公式
sinx-siny
=2sin[(x-y)/2]cos[(x+y)/2]
推导.
sinx-siny
=2sin[(x-y)/2]cos[(x+y)/2]
推导.
sinx-siny
=sin[(x-y)/2 + (x+y)/2] -sin[(x+y)/2 -(x-y)/2] (变形后再利用两角和与差的正弦公式)
=sin[(x-y)/2]cos[(x+y)/2] +cos[(x-y)/2]sin[(x+y)/2] -{sin[(x+y)/2]cos[(x-y)/2] -cos[(x+y)/2]sin[(x-y)/2]}
=2sin[(x-y)/2]cos[(x+y)/2]
=sin[(x-y)/2 + (x+y)/2] -sin[(x+y)/2 -(x-y)/2] (变形后再利用两角和与差的正弦公式)
=sin[(x-y)/2]cos[(x+y)/2] +cos[(x-y)/2]sin[(x+y)/2] -{sin[(x+y)/2]cos[(x-y)/2] -cos[(x+y)/2]sin[(x-y)/2]}
=2sin[(x-y)/2]cos[(x+y)/2]
两角和差公式sinx-siny=2sin[(x-y)/2]cos[(x+y)/2]推导.
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
求证:sin(2x+y)/sinx-2cos(x+y)=siny/sinx
请问,如何证明sinx+siny=2*sin(x+y/2)*cos(x-y/2)
求证sinx+siny=2sin(x+y)/2*cos(x-y)/2
求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|
为什么sin(x+y) - sinx = 2cos(x+y/2)siny/2
求证:sin(x-y)/(sinx-siny)=cos[(x-y)/2]/cos[(x+y)/2]
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+
证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.
证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin(x-y)/2
证明sin(x+y)sin(x-y)=sinx-siny