已知数列{an}中,S1=1,前n项和Sn与通项an满足an=2Sn^2/(2Sn-(1))(n属于N,n大于等于2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:17:03
已知数列{an}中,S1=1,前n项和Sn与通项an满足an=2Sn^2/(2Sn-(1))(n属于N,n大于等于2)
(1)求证1/Sn是等差数列
(2)求数列{an}的通项公式
上面那个是2Sn-1,不是2S(n-1)
(1)求证1/Sn是等差数列
(2)求数列{an}的通项公式
上面那个是2Sn-1,不是2S(n-1)
an=2*s²n/(2sn-1))
(sn-s(n-1))(2sn-1)=2s²n
2s²n-sn-2sns(n-1)+s(n-1)=2s²n
s(n-1)-sn=2sn*s(n-1)
1/sn-1/s(n-1)=2
s1=1,1/s1=1
1/Sn是以1为首项,公差为2的等差数列
1/sn=1+2(n-1)=2n-1
sn=1/(2n-1)
an=sn-s(n-1)
=1/(2n-1)-1/(2(n-1)-1)
=1/(2n-1)-1/(2n-3)
=(2n-3-2n+1)/(2n-1)(2n-3)
=-2/(4n²-7n+3)
(sn-s(n-1))(2sn-1)=2s²n
2s²n-sn-2sns(n-1)+s(n-1)=2s²n
s(n-1)-sn=2sn*s(n-1)
1/sn-1/s(n-1)=2
s1=1,1/s1=1
1/Sn是以1为首项,公差为2的等差数列
1/sn=1+2(n-1)=2n-1
sn=1/(2n-1)
an=sn-s(n-1)
=1/(2n-1)-1/(2(n-1)-1)
=1/(2n-1)-1/(2n-3)
=(2n-3-2n+1)/(2n-1)(2n-3)
=-2/(4n²-7n+3)
已知数列{an}中,S1=1,前n项和Sn与通项an满足an=2Sn^2/(2Sn-(1))(n属于N,n大于等于2)
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
数列an首项a1=1前n项和sn与an之间满足an=2Sn^2/(Sn-1)(n大于等于2)
已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn
数列{an}中,a1=1,当n大于等于2时,其前n项的和Sn,满足Sn的平方=an(Sn-1)
已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=
已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An.
数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)
已知数列【An】的前n项和为Sn,A1=-3分之2,满足Sn+Sn分之1+2=An(n大于等于2).计算S1,S2,S3
已知数列{an}的前n项和为Sn,且满足a1=1,2an/(anSn-Sn^2)=1(n大于等于2)
n已知数列{an}中,a1=2其前n项和Sn满足Sn+1-Sn=2^(n+1) (n属于正整数),1求数列{an}的通项