作业帮 > 综合 > 作业

(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 10:08:06
(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.

(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.
(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点
(1)设抛物线的函数表达式为y=a(x-1)(x+3)
∵抛物线交y轴于点E(0,-3),将该点坐标代入上式,得a=1
∴所求函数表达式为y=(x-1)(x+3),
即y=x2+2x-3;

(2)∵点C是点A关于点B的对称点,点A坐标(-3,0),点B坐标(1,0),
∴点C坐标(5,0),
∴将点C坐标代入y=-x+m,得m=5,
∴直线CD的函数表达式为y=-x+5,
设K点的坐标为(t,0),则H点的坐标为(t,-t+5),G点的坐标为(t,t2+2t-3),
∵点K为线段AB上一动点,
∴-3≤t≤1,
∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-(t+
3
2)2+
41
4,
∵-3<-
3
2<1,
∴当t=-
3
2时,线段HG的长度有最大值
41
4;

(3)∵点F是线段BC的中点,点B(1,0),点C(5,0),
∴点F的坐标为(3,0),
∵直线l过点F且与y轴平行,
∴直线l的函数表达式为x=3,
∵点M在直线l上,点N在抛物线上,
∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n-3),
∵点A(-3,0),点C(5,0),
∴AC=8,
分情况讨论:
①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8.
当点N在点M的左侧时,MN=3-n,
∴3-n=8,解得n=-5,
∴N点的坐标为(-5,12),
当点N在点M的右侧时,MN=n-3,
∴n-3=8,
解得n=11,
∴N点的坐标为(11,140),
②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P点坐标为(-1,0)
过P点作NP⊥x轴,交抛物线于点N,
将x=-1代入y=x2+2x-3,得y=-4,
过点N作直线NM交直线l于点M,
在△BPN和△BFM中,
∠NBP=∠MBF,
BF=BP,
∠BPN=∠BFM=90°,
∴△BPN≌△BFM,
∴NB=MB,
∴四边形ANCM为平行四边形,
∴坐标(-1,-4)的点N符合条件,
∴当N的坐标为(-5,12),(11,140),(-1,-4)时,以点A、C、M、N为顶点的四边形为平行四边形.
(2011•威海)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点 如图,已知直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点. 如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C (2012•深圳二模)如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),交y轴于点C.已知 如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的 (2014•沧州二模)如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D. (2013•锦州模拟)如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点.与y轴交于点C(0,3) 如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3). 如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0) 如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点. 如图,抛物线y=ax2+bx+c的顶点为A(-3,2),与x轴相交于点C(-2,0),过点C画CB⊥AC交y轴于点B,连 如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)