直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 03:21:32
直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、R两点,则当k取何值时,△PQR的面积最小,并求此时直线l的方程
设L:y=kx+2k+1 k=tanθ
直线M的斜率为
m=tan(θ+π/4)=(tanθ+tanπ/4)/(1-tanθ*tanπ/4)=(k+1)/(1-k)
直线M为y=(k+1)x/(1-k))+(k+3)/(1-k)
所以Q(0,2k+1);R(0,(k+3)/(1-k)) .
PQ=2k+1-(k+3)/(1-k)=(2k^2+2)/(k-1)
三角形PQR面积为【高为p到y轴距离】
S=1/2*(2k^2+2)/(k-1)*2
=(2k^2+2)/(k-1)
=2[(k-1)^2+2(k-1)+2]/(k-1)
=2[k-1+2+2/(k-1)]
用均值定理,当且仅当k-1=2/(k-1)时,S取最小值,k=1±√2,
因为k>1,所以k=1+√2
直线L的方程:y=(1+√2)x+3+2√2
直线M的斜率为
m=tan(θ+π/4)=(tanθ+tanπ/4)/(1-tanθ*tanπ/4)=(k+1)/(1-k)
直线M为y=(k+1)x/(1-k))+(k+3)/(1-k)
所以Q(0,2k+1);R(0,(k+3)/(1-k)) .
PQ=2k+1-(k+3)/(1-k)=(2k^2+2)/(k-1)
三角形PQR面积为【高为p到y轴距离】
S=1/2*(2k^2+2)/(k-1)*2
=(2k^2+2)/(k-1)
=2[(k-1)^2+2(k-1)+2]/(k-1)
=2[k-1+2+2/(k-1)]
用均值定理,当且仅当k-1=2/(k-1)时,S取最小值,k=1±√2,
因为k>1,所以k=1+√2
直线L的方程:y=(1+√2)x+3+2√2
直线l点p(-2,1)且斜率为k(k>1),将直线l绕点p按逆时针方向旋转45度,得直线m,若直线l与m分别交y轴于Q、
高二数学!快.直线L过点P(-2,1)且斜率k>1,将直线L绕点P按逆时针方向旋转45度得直线m,若直线L和直线m分别与
直线和圆的方程问题!已知直线L过点p(-2,1)且斜率为k(k大于1),如图所示,将直线L绕点按逆时针方向旋转45度得直
已知过点A(1,1),且斜率为-m(m>0)的直线l与x,y轴分别交于点P,Q .过P,Q分别做直线2x+y=0的垂线,
已知一直线l:2x+y=0,另一直线L经过点A(1,1)且斜率为-m,(m>0),设直线L与x,y轴分别相交于P,Q两点
抛物线C:y=x^2,直线l过点P(-1,-1)且斜率为k,若直线l交C与P1、P2两点.
已知过A(1,1),且斜率为-m,(m>0)的直线l与x,y轴分别交于,P,Q,过P.Q做直线2x+y=0的垂线,垂足为
直线l过点M(0,-2)且与直线l1:x+y-3=0和直线l2:x-2y+4=0分别交于P、Q,若M恰为PQ的中点,求l
若直线l与直线y=1,x=7分别交于点P、Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为______.
过点M(-2,0)的直线l与椭圆交于p1p2两点,线段p1p2中点为p,设直线l斜率为k(k≠0)直线op斜率为k2
过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点
已知过点A(1,1)且斜率为-M(M>0)的直线L与X,Y轴分别交于点P Q.过P Q作直线2X+Y=0的垂线,垂足为R