高一多项式函数证明题多项式函数定义我就不多说了设f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:54:49
高一多项式函数证明题
多项式函数定义我就不多说了
设f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=g[f(x)]都成立
若方程f(x)=g(x)无实数解,证明方程f[f(x)]=g[g(x)]也无实数解
多项式函数定义我就不多说了
设f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=g[f(x)]都成立
若方程f(x)=g(x)无实数解,证明方程f[f(x)]=g[g(x)]也无实数解
反证法.
设存在实数x0 使 f[f(x0)]=g[g(x0)] ,
则 g{f[f(x0)]}=g{g[g(x0)]} ,
由已知,上式左端=f{g[f(x0)]}=f{f[g(x0)]},
令 y0=g(x0) ,则 f[f(y0)]=g[g(y0)] ,也就是说,如果x0是方程 f[f(x)]=g[g(x)]的根,则y0=g(x0)也是其根.
同理,由 f[f(x0)]=g[g(x0)] ,则 f{f[f(x0)]}=f{g[g(x0)]}=g{f[g(x0)]}=g{g[f(x0)]} ,
令 z0=f(x0) ,则 f[f(z0)]=g[g(z0)] ,就是说,如果x0是方程 f[f(x)]=g[g(x)]的根,则z0=f(x0)也是其根.
这说明,若方程f[f(x)]=g[g(x)]有根x0,则 f(x0)=g(x0),这与f(x)=g(x)无实数解矛盾.
因此,若方程 f(x)=g(x)无实数解,则方程 f[f(x)]=g[g(x)] 也无实数解.
设存在实数x0 使 f[f(x0)]=g[g(x0)] ,
则 g{f[f(x0)]}=g{g[g(x0)]} ,
由已知,上式左端=f{g[f(x0)]}=f{f[g(x0)]},
令 y0=g(x0) ,则 f[f(y0)]=g[g(y0)] ,也就是说,如果x0是方程 f[f(x)]=g[g(x)]的根,则y0=g(x0)也是其根.
同理,由 f[f(x0)]=g[g(x0)] ,则 f{f[f(x0)]}=f{g[g(x0)]}=g{f[g(x0)]}=g{g[f(x0)]} ,
令 z0=f(x0) ,则 f[f(z0)]=g[g(z0)] ,就是说,如果x0是方程 f[f(x)]=g[g(x)]的根,则z0=f(x0)也是其根.
这说明,若方程f[f(x)]=g[g(x)]有根x0,则 f(x0)=g(x0),这与f(x)=g(x)无实数解矛盾.
因此,若方程 f(x)=g(x)无实数解,则方程 f[f(x)]=g[g(x)] 也无实数解.
高一多项式函数证明题多项式函数定义我就不多说了设f(x),g(x)为两个多项式函数,且对所有的实数x等式f[g(x)]=
f(x)与g(x)是定义在R上的两个多项式函数
已知y=g(x)为二次多项式函数 函数f(x)在[0,2]上二阶可导
设f(x),g(x)为数域f上的不全为零多项式.证明[f(x),g(x)]=[f(x),f(x)+g(x)]
求助一道高数证明题,设f(x),g(x)是定义在R上的两个非零可微函数,且满足 f(x+y
设f(x),g(x),h(x)是实数域上的多项式.证明:若f(x)=xg(x)+xh(x)
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=
设f(x),g(x),h(x)都是多项式,证明::(f(x),g(x))=(f(x)-g(x)h(x),g(x))
证明函数f(x)=sinx 不是多项式
数学分析 高数 连续函数的多项式逼近(2)设函数f(x)在一个无穷区间上可被多项式逼近,证明f(x
f(x)是一实函数,如果对任意x∈R,存在x的某个领域,在这个领域内,f(x)是多项式,证明:f(x)是多项式.
设f(x)与g(x)均为可导函数,且有g(x)=f(x+c),其中c为常数,利用倒数的定义证明g’(x)=f’(x+c)