已知A.B为抛物线C;y^2=4x上的不同两点,F为抛物线C的焦点,若向量FA=-4向量FB,则直线AB的斜率为
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:27:34
已知A.B为抛物线C;y^2=4x上的不同两点,F为抛物线C的焦点,若向量FA=-4向量FB,则直线AB的斜率为
y=4x 焦点为(1,0)
过焦点直线与抛物线交于AB两点.
分别过AB作x轴的垂线,那么得到的两个三角形相似.
FA的长度是FB的四倍
假设B点坐标(1-x,-y)
相似得到A点坐标(1+4x,4y)
BF的长度 1-x+1=根号( (1-x-1)^2+y^2)
得到4x=2-y^2
A坐标就可以写为(3-y^2,4y) 代入抛物线
16y^2=4(3-y^2)
y=1或者-1 那么x=1/4
也就是直线过点(1/4,1)或者(1/4,-1)
斜率为 (+/-) 4/3
过焦点直线与抛物线交于AB两点.
分别过AB作x轴的垂线,那么得到的两个三角形相似.
FA的长度是FB的四倍
假设B点坐标(1-x,-y)
相似得到A点坐标(1+4x,4y)
BF的长度 1-x+1=根号( (1-x-1)^2+y^2)
得到4x=2-y^2
A坐标就可以写为(3-y^2,4y) 代入抛物线
16y^2=4(3-y^2)
y=1或者-1 那么x=1/4
也就是直线过点(1/4,1)或者(1/4,-1)
斜率为 (+/-) 4/3
已知A.B为抛物线C;y^2=4x上的不同两点,F为抛物线C的焦点,若向量FA=-4向量FB,则直线AB的斜率为
已知A、B为抛物线C:y^2=4x上的不同两点,F为抛物线C的焦点,若FA=-4FB,则直线AB的斜率为?
F为抛物线y方=4x的焦点,A,B,C为抛物线上的三点,若向量FA+向量FB+向量FC=0向量,则|FA|+|FB|+|
设F为抛物线y^2=4x的焦点,A.B.C为该抛物线上三点,若向量FA+向量FB+向量FC=0,则/FA/+/FB/+/
1.设F为抛物线 y^2=4x 的焦点,A、B、C为抛物线上3点,若FA+FB+F=0 (是向量) 则|FA|+|FB|
已知点c为y方=2px(p>0)的准线与x轴的交点,点f为焦点,点a,b为抛物线上的两点,若向量fa+向量fb+2向量f
设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上3点,若FA(向量)+FB(向量)+FC(向量)=0(向量)
设F为抛物线y^2=4x的焦点,A、B为该抛物线上两点,若向量FA+2FB=0,则|FA|+2|FB|=______
已知抛物线C:y^2=2px(p>0)过焦点F且斜率为k(k>0)的直线与C相交于A,B两点,若向量AF=3向量FB,则
若A为抛物线Y=1/4X^2的顶点,过抛物线焦点的直线交抛物线于B,C两点,则向量AB*AC=?
已知抛物线x^2=4y的焦点为F,A、B是抛物线上的两动点,且向量AF=λ向量FB(λ>0).过AB两点分别作作抛物线的
已知A,B为抛物线C:y²=4x上不同两点,且直线AB的倾斜角为锐角,F为抛物线上的焦点