在P^4中,求向量b在基a1,a2,a3,a4下的坐标.设,a1=(1,1,0,1),a2=(2,1,3,1),a3=(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 20:12:46
在P^4中,求向量b在基a1,a2,a3,a4下的坐标.设,a1=(1,1,0,1),a2=(2,1,3,1),a3=(1,1,0,0,),a4=(0,1,-1,-1),b=(0,0,0,1).
设 b 在基 a1、a2、a3、a4 下的坐标为 (x,y,z,w) ,
即 b=xa1+ya2+za3+wa4 ,
用坐标表示为 (0,0,0,1)=x(1,1,0,1)+y(2,1,3,1)+z(1,1,0,0)+w(0,1,-1,-1) ,
因此可得方程组
{x+2y+z=0 ;
{x+y+z+w=0 ;
{3y-w=0 ;
{x+y-w=1 ;
可解得 x=1,y=0,z = -1 ,w=0 ,
即 b 的坐标为(1,0,-1,0).
即 b=xa1+ya2+za3+wa4 ,
用坐标表示为 (0,0,0,1)=x(1,1,0,1)+y(2,1,3,1)+z(1,1,0,0)+w(0,1,-1,-1) ,
因此可得方程组
{x+2y+z=0 ;
{x+y+z+w=0 ;
{3y-w=0 ;
{x+y-w=1 ;
可解得 x=1,y=0,z = -1 ,w=0 ,
即 b 的坐标为(1,0,-1,0).
在P^4中,求向量b在基a1,a2,a3,a4下的坐标.设,a1=(1,1,0,1),a2=(2,1,3,1),a3=(
在1,2,3,4,5的所有排列:a1,a2,a3,a4,a5中,满足条件a1>a2,a3>a2,a3>a4,a5>a4的
设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求
向量组(1)a1,a2,a3(2)a1,a2,a3,a4(3)a1,a2,a3,a5 R(1)=R(2)=3,R(3)=
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+
三个正整数a1,a2,a3,且a1+a2+a3=a1×a2×a3,a1≥1,a2≥2,a3≥3,求a1,a2,)
设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a
在等比数列{an}中,a1+a2+a3+a4+a5=8且1/A1+1/A2+1/A3+1/A4+1/a5=2,则a3=?
在等比数列an中 a1+a2+a3+a4+a5=8 且1/a1+1/a2+1/a3+1/a4+1/a5=2 则a3=
已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3
(1) 已知a1,a2,a3,a4为等比数列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,