焦点在x轴上的椭圆离心率为二分之根号三,并且椭圆与(x-2)^+(y-1)^=5/2交于A,B两点,线段AB的长等于圆的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 14:00:17
焦点在x轴上的椭圆离心率为二分之根号三,并且椭圆与(x-2)^+(y-1)^=5/2交于A,B两点,线段AB的长等于圆的直径
1,求直线AB的方程
2,求椭圆的方程
1,求直线AB的方程
2,求椭圆的方程
1.由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为 x²+4y²=a²,因为线段AB的长等于圆的直径,所以直线AB必过P(2,1),设
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1
直线AB为y-1=k(x-2),y-1=k(x-2)与x²+4y²=a²联立得(1+4k²)x²-4(4k²-2k)x
+4(2k-1)²=0,由题意可知P必为线段AB中点,设A(x1,y1),B(x2,y2),所以x1+x2
=4=4(4k²-2k)/(1+4k²),所以k=-(1/2),所以直线AB的方程是x+2y-4=0
2,由题1得y1+y2=2,x+2y-4=0 与x²+4y²=a²联立得8y²-8y+16-a²=0,AB²=[1+(-2)]*[(y1+y2)²-4y1*y2]=5*[4-(16-a²)/2]=(2√(5/2))²=10,所以a²=12,
b²=0.25a²=3,所以椭圆的方程为x²/12+y²/3=1
焦点在x轴上的椭圆离心率为二分之根号三,并且椭圆与(x-2)^+(y-1)^=5/2交于A,B两点,线段AB的长等于圆的
圆锥曲线试题已知椭圆的离心率为二分之根号三,直线y=(1/2)x+1与椭圆交与两点A,B,M在椭圆上,向量OM=(1/2
已知椭圆的中心在圆点,焦点在x轴上,椭圆和直线l:x+2y-2=0交于A,B两点,且|AB|=根号5,线段AB中点为(1
过椭圆x^2 /5 +y^2 =1 的右焦点与x轴垂直的直线交椭圆于A,B两点,线段AB的长
数学题椭圆方程的题椭圆中心为原点O,焦点在x轴上,离心率e=根号2\2,直线y=x=1交椭圆于A、B两点,且△AOB的面
椭圆C以双曲线x^2-y^2/2=1的顶点为焦点,且离心率为二分之一.求椭圆C的方程.直线y=kx+b与椭圆交于AB两点
已知椭圆x^2/2+y^2=1的左焦点为F,过点F的直线交椭圆于A,B两点,并且线段AB 的中点在直线x+y=0上,
椭圆中心为原点o,焦点在x轴上,离心率e=根号2/2,直线y=x+1交椭圆于A,B两点,且三角形AOB的面积=2/3,
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.
椭圆a的平方分之x的平方+b的平方分之y的平方=1的离心率为二分之根号三,椭圆与直线x+2y+8=0相交于P,Q两点,且
椭圆中心为原点O,焦点在x轴上,离心率e=√2/2,直线y=x+1交椭圆于A,B两点,且△AOB的面积等于2/3
椭圆x2/2+y2=1的左焦点为F,过点P的直线交椭圆与A,B两点并且线段AB的中点在直线x+y=0上,求直线AB的方程