已知直线y=kx+1交抛物线y=x2于A、B两点.(1)求证:OA⊥OB(O为坐标原点);(2)若△AOB的面积为2,求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 16:05:05
已知直线y=kx+1交抛物线y=x2于A、B两点.(1)求证:OA⊥OB(O为坐标原点);(2)若△AOB的面积为2,求k的值
(1)
直线y=kx+1交抛物线y=x²于A、B两点
有如下关系
x²=kx+1
x²-kx-1=0
设A点坐标为(p,p²),B点坐标为(q,q²)
直线OA的斜率为p²/p=p ,直线OB的斜率为q²/q=q
因为p,q是方程x²-kx-1=0得两个解,根据一元二次方程解得性质得
p+q=k pq=-1
所以OA⊥OB
(2)
A,B在y=kx+1上
所以A点坐标又可表示为(p,kp+1),
B可表示为(q,kq+1),
|OA|²=p²+p^4
|OB|²=q²+q^4
(S△AOB)²=|OA|²*|OB|²/2²
4=(p²+p^4)(q²+q^4)/4
p²q²+p²q²q²+p²p²q²+p^4q^4=16
将pq=-1代入得
(-1)²+(-1)²q²+p²(-1)²+(-1)^4=16
1+p²+q²+1=16
p²+q²=14
p²+q²+2pq=14+2pq
(p+q)²=12
k²=12
k=±2√3
直线y=kx+1交抛物线y=x²于A、B两点
有如下关系
x²=kx+1
x²-kx-1=0
设A点坐标为(p,p²),B点坐标为(q,q²)
直线OA的斜率为p²/p=p ,直线OB的斜率为q²/q=q
因为p,q是方程x²-kx-1=0得两个解,根据一元二次方程解得性质得
p+q=k pq=-1
所以OA⊥OB
(2)
A,B在y=kx+1上
所以A点坐标又可表示为(p,kp+1),
B可表示为(q,kq+1),
|OA|²=p²+p^4
|OB|²=q²+q^4
(S△AOB)²=|OA|²*|OB|²/2²
4=(p²+p^4)(q²+q^4)/4
p²q²+p²q²q²+p²p²q²+p^4q^4=16
将pq=-1代入得
(-1)²+(-1)²q²+p²(-1)²+(-1)^4=16
1+p²+q²+1=16
p²+q²=14
p²+q²+2pq=14+2pq
(p+q)²=12
k²=12
k=±2√3
已知直线y=kx+1交抛物线y=x2于A、B两点.(1)求证:OA⊥OB(O为坐标原点);(2)若△AOB的面积为2,求
已知直线y=kx+2交抛物线x∧2=2y于A,B两点,O为坐标原点,(1)求证OA⊥OB
已知直线y=kx+1交抛物线y=x平方于A、B两点,求证:(1)求证OA垂直OB(O为坐标原点)(2)若S三角形AOB=
如图,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,O为坐标原点,OA+OB=(−4,−1
抛物线y=-1/2x2与过点M(0,-1)的直线L交于A,B两点,O为坐标原点,若直线OA与OB的斜率之和为1,求直线L
已知抛物线y^2=-x与直线y=k(x+1)相交于A、B两点,O为坐标原点,求证OA垂直OB
坐标原点为O,抛物线y^2=2x与过焦点的直线交于A,B两点,则向量OA乘于向量OB=?
直线与抛物线y方=2px(p>0)交于A,B两点,O为坐标原点,若OA⊥OB,OD⊥AB,垂足是D(2,-1),求抛物线
已知椭圆的中心坐标原点为O,右焦点为F(1,0),短轴长为2,求直线L:Y=KX+B于AB两点且OA垂直于OB,求证直
斜率为2的直线与椭圆x^2/4+y^2=1交于两点A,B,求|OA||OB|范围(O为坐标原点)
直线y=x+b与抛物线x2=2y交于A、B两点(异于坐标原点O),且OA⊥OB,则b的值为( )
已知直线y=x+b与抛物线x^2=2y交于A,B两点,且OA垂直于OB(O为坐标原点),求b的取值范围请写清楚过程谢谢