抛物线y=x².直线Y=x-2.点P在直线上,过P点做两条切线PA PB,切与抛物线A B两点.求三角形PAB
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:20:36
抛物线y=x².直线Y=x-2.点P在直线上,过P点做两条切线PA PB,切与抛物线A B两点.求三角形PAB的重心轨迹方程
y=x^2==>p=1/2
设:A(x1,x1^2),B(x2,x2^2)
根据抛物线的切线公式得:
AP的方程是:2x1x-y-x1^2=0----------------------------(1)
BP的方程是:2x2x-y-x2=0-------------------------------(2)
(1),(2)方程得:
Xp=(x1+x2)/2,Yp=x1x2
即:P点坐标是:P[(x1+x2)/2,x1x2]
∴三角形APB的重心G;
Xg=(x1+x2+Xp)/3=(x1+x2)/2=Xp
Yg=(x1^2+x2^2+Yp)/3=(x1^2+x2^2+x1x2)/3
==>[(x1+x2)^2-x1x2]/3
==>[4(x1+x2)^2/2-Yp]/3
==>(4Xp^2-Yp)/3
==>Yp=4Xp^2-3Yg
==>Yp=4Xg^2-3Yg
因为Yp在直线l:x-y-2=0上运动,代入得G的方程:
y=1/3(4x^2-x+2)
即:三角形APB的重心G的轨迹方程是:
y=1/3(4x^2-x+2)
设:A(x1,x1^2),B(x2,x2^2)
根据抛物线的切线公式得:
AP的方程是:2x1x-y-x1^2=0----------------------------(1)
BP的方程是:2x2x-y-x2=0-------------------------------(2)
(1),(2)方程得:
Xp=(x1+x2)/2,Yp=x1x2
即:P点坐标是:P[(x1+x2)/2,x1x2]
∴三角形APB的重心G;
Xg=(x1+x2+Xp)/3=(x1+x2)/2=Xp
Yg=(x1^2+x2^2+Yp)/3=(x1^2+x2^2+x1x2)/3
==>[(x1+x2)^2-x1x2]/3
==>[4(x1+x2)^2/2-Yp]/3
==>(4Xp^2-Yp)/3
==>Yp=4Xp^2-3Yg
==>Yp=4Xg^2-3Yg
因为Yp在直线l:x-y-2=0上运动,代入得G的方程:
y=1/3(4x^2-x+2)
即:三角形APB的重心G的轨迹方程是:
y=1/3(4x^2-x+2)
抛物线y=x².直线Y=x-2.点P在直线上,过P点做两条切线PA PB,切与抛物线A B两点.求三角形PAB
y=x2的焦点为F,动点p在直线 x-y-2=0上运动,过点p作抛物线的两条切线PA,PB,且与抛物线分别相切于A,B两
已知抛物线Cx^2=4y,直线l:x-y-2=0设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切
点P在直线L:y=x-1上,若存在过P的直线交抛物线 y=x^2 于A,B两点,且|PA|=|PB|,则称点P为@点,那
点P在直线L:Y=X-1上,若存在过P的直线交抛物线Y=X^2于A,B两点,且PA的绝对值等于PB的绝对值,则称点P为好
设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分
设抛物线C:Y=X?的焦点为F,动点P在直线L:X-Y-2=0上运动,过P作抛物线c的两条切线PA,PB,且与抛物线C分
知道就来1.点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|PB|,则称点P为“
设抛物线y=4-x²与直线y=3x的两交点为A.B,点P 在抛物线上从A向B运动.(1)求使三角形PAB的面积
过抛物线x^2=4y上不同的两点A,B分别作抛物线的切线相交于P点,向量PA*向量PB=0
直线y=-2与抛物线y=-x2交于A,B两点,点P在抛物线y=-x2上,若三角形PAB的面积为2倍根号2求P点坐标
设直线y=x-b抛物线y平方=2x交与a,b两点,已知|ab|=2根号10,点p为抛物线上一点三角形pab的面积为2根号