设各项均为正数的数列的钱n项和为sn,满足4sn=4(an+1)^2-4n-1,n属于正整数,且a2、a5、a14构成等
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:58:12
设各项均为正数的数列的钱n项和为sn,满足4sn=4(an+1)^2-4n-1,n属于正整数,且a2、a5、a14构成等比数列
(1)求证a2=根号(4a1+5)(这里是2a2还是a2 T T我证的是2a2 )(2)求数列an的通项公式 不要复制 和网上的题是不一样的.
(1)求证a2=根号(4a1+5)(这里是2a2还是a2 T T我证的是2a2 )(2)求数列an的通项公式 不要复制 和网上的题是不一样的.
解:(1)因为4S1=4(an+1)^2-4n-1,且S1=a1,所以4a1=4a2^2-4-1,所以a2=√(4a1+5)/2;(2)因为4Sn=4(an+10)^2-4n-1,所以4S(n-1)=4an^2-4(n-1)-1,又因为Sn-S(n-1)=an,所以4Sn-4S(n-1)=4a,所以4(an+1)^2-4n-1-[4an^2-4(n-1)-1]=4an,所以an=√(an^2+an-3/4),再结合a2,a5,a14成等比数列即可.
设各项均为正数的数列的钱n项和为sn,满足4sn=4(an+1)^2-4n-1,n属于正整数,且a2、a5、a14构成等
各项均匀为正数的数列﹛an﹜的前n项和为Sn,满足4Sn=a2(n+1)-4n-1,n属于N*,a2,a5,a14构成等
各项均匀为正数的数列﹛an﹜的前n项和为Sn,满足4Sn=a²(n+1)-4n-1,n属于N*,a2,a5,a
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列
求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4
已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
设各项都为正数的数列an 前n项和为sn 且满足Sn=1/2(an+1/an)
高中数学数列题:已知各项均为正数的数列{an}的前n项和sn满足sn>1,且6sn=(an+1)(an+2),n属于正整
已知数列an前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)^2an(n属于正整数) 求an
已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项