在三角形ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1.1:求角A的大小;2:若
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:47:28
在三角形ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1.1:求角A的大小;2:若三角形ABC的面积S=5倍根号3,b=5,求sinBsinC的值
答:
三角形ABC中:cos2A-3cos(B+C)=1
1)
因为:A+B+C=180°
所以:cos(B+C)=-cosA
代入cos2A-3cos(B+C)=1得:
2(cosA)^2-1+3cosA=1
2(cosA)^2+3cosA-2=0
(2cosA-1)(cosA+2)=0
因为:cosA+2>0
所以:2cosA-1=0
所以:cosA=1/2
解得:A=60°
2)
S=bcsinA/2=5√3
bcsin60°=10√3
bc=20
b=5,c=4
根据余弦定理有:
a^2=b^2+c^2-2bccosA
=25+16-40*(1/2)
=21
a=√21
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
所以:
√21/(√3/2)=5/sinB=4/sinC
解得:sinB=5√7/14,sinC=2√7/7
三角形ABC中:cos2A-3cos(B+C)=1
1)
因为:A+B+C=180°
所以:cos(B+C)=-cosA
代入cos2A-3cos(B+C)=1得:
2(cosA)^2-1+3cosA=1
2(cosA)^2+3cosA-2=0
(2cosA-1)(cosA+2)=0
因为:cosA+2>0
所以:2cosA-1=0
所以:cosA=1/2
解得:A=60°
2)
S=bcsinA/2=5√3
bcsin60°=10√3
bc=20
b=5,c=4
根据余弦定理有:
a^2=b^2+c^2-2bccosA
=25+16-40*(1/2)
=21
a=√21
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
所以:
√21/(√3/2)=5/sinB=4/sinC
解得:sinB=5√7/14,sinC=2√7/7
在三角形ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1.1:求角A的大小;2:若
在三角形中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1 求角A的大小
在三角形ABC中 角A B C对应的边分别是a b c,已知cos2A-3cos(B+C)=1
三角形ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1. 1.求角A的大小 2.若
在三角形ABC中,角A,B,C对应的边分别是abc,已知cos2A-3cos(B+C)=1 1.求角A的大小 2.若三角
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.
在三角形ABC中,a,b,c分别是角A,B,C的对边,已知2cos[B+C]+cos2A=-3/2,a=√3,b+c=3
在△ABC中,a,b,c分别是角A、B、C的对边,且2cos(B+C)+cos2A=-3/2
在△ABC中,a,b,c分别是角A,B,C的对边,且2cos(B+C)+cos2A=-3、2.
在三角形ABC中,已知cos2A-3cos(B+C)=1 ,求角A.
在△ABC中,a,b,c分别是角A,B,C的对边,已知2cos(B+C)+cos2A=-3/2,a=根号3,b+c=3,
在三角形ABC中,角A,B,C所对的边分别是a,b,c,又cosA=4/5.求cos^2 A/2+cos2A的值.若b=