如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC 1 D
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:16:58
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC 1 D 1 和△BC 2 D 2 两个三角形(如图所示),将纸片△AC 1 D 1 沿直线D 2 B(AB)方向平移(点A,D 1 ,D 2 ,B始终在同一直线上),当点D 1 于点B重合时,停止平移,在平移过程中,C 1 D 1 与BC 2 交于点E,AC 1 与C 2 D 2 、BC 2 分别交于点F、P。 |
|
(1)当△AC 1 D 1 平移到如图3所示的位置时,猜想图中的D 1 E与D 2 F的数量关系,并证明你的猜想; (2)设平移距离D 2 D 1 为x,△AC 1 D 1 与△BC 2 D 2 重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; (3)对于(2)中的结论是否存在这样的x的值;若不存在,请说明理由。 |
(1)
因为
所以
又因为
CD是斜边上的中线
所以
即
所以
所以
所以
同理
又因为
所以
所以 。
(2)∵在Rt△ABC中,AC=8,BC=6,
∴由勾股定理,得AB=10
即
又因为
所以
所以
在 中, 到 的距离就是 的 边上的高,为
设 的 边上的高为h,由探究,得
所以
所以
又因为
所以
又因为 ,
所以 ,
而
所以 。
(3)存在
当 时,即
整理,得
解得 。
即当 或x=5时,重叠部分的面积等于原△ABC面积的 。
因为
所以
又因为
CD是斜边上的中线
所以
即
所以
所以
所以
同理
又因为
所以
所以 。
(2)∵在Rt△ABC中,AC=8,BC=6,
∴由勾股定理,得AB=10
即
又因为
所以
所以
在 中, 到 的距离就是 的 边上的高,为
设 的 边上的高为h,由探究,得
所以
所以
又因为
所以
又因为 ,
所以 ,
而
所以 。
(3)存在
当 时,即
整理,得
解得 。
即当 或x=5时,重叠部分的面积等于原△ABC面积的 。
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC 1 D
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC 1 D
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6。沿斜边AB的中线CD把这张纸片剪成
关于几何证明的,如图1所示,一张三角形纸片ABC,∠ACB=,∠A=,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC
如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△B
如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△B
如图1所示,一张三角形纸片,角ACB=90,ac=8.bc=6.沿斜边AB的中线CD把这张纸片剪成 0 |
中考二十四题,如图一所示,一张三角形纸片ABC,角ACB=90°,AC=8,BC=6,沿着斜边AB的中线CD把这张纸片剪
(2010•密云县二模)如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=BC,沿斜边AB的高线CD把它剪成如图2所示△AC1D1