作业帮 > 数学 > 作业

设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:57:38
设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)求f(2) 证单调性奇偶性
设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)
(1)令x=2,y=1
得f(2)-f(1)=f(2-1)=f(1)
所以f(2)=2f(1)=2×(-5)=-10
(2)
任取x1<x2
则f(x1)-f(x2)=f(x1-x2)
因为当x<0时,f(x)>0
又x1<x2
x1-x2<0
所以f(x1-x2)>0
即f(x1)>f(x2)
所以f(x)为减函数
令x=y=0
得f(0)-f(0)=f(0-0)
解得f(0)=0
再令x=0
得f(0)-f(y)=f(-y)
即f(-y)=-f(y)
所以f(x)为奇函数
答案:(1) f(2)=-10
(2) 减函数、奇函数