设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:57:38
设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)求f(2) 证单调性奇偶性
(1)令x=2,y=1
得f(2)-f(1)=f(2-1)=f(1)
所以f(2)=2f(1)=2×(-5)=-10
(2)
任取x1<x2
则f(x1)-f(x2)=f(x1-x2)
因为当x<0时,f(x)>0
又x1<x2
x1-x2<0
所以f(x1-x2)>0
即f(x1)>f(x2)
所以f(x)为减函数
令x=y=0
得f(0)-f(0)=f(0-0)
解得f(0)=0
再令x=0
得f(0)-f(y)=f(-y)
即f(-y)=-f(y)
所以f(x)为奇函数
答案:(1) f(2)=-10
(2) 减函数、奇函数
得f(2)-f(1)=f(2-1)=f(1)
所以f(2)=2f(1)=2×(-5)=-10
(2)
任取x1<x2
则f(x1)-f(x2)=f(x1-x2)
因为当x<0时,f(x)>0
又x1<x2
x1-x2<0
所以f(x1-x2)>0
即f(x1)>f(x2)
所以f(x)为减函数
令x=y=0
得f(0)-f(0)=f(0-0)
解得f(0)=0
再令x=0
得f(0)-f(y)=f(-y)
即f(-y)=-f(y)
所以f(x)为奇函数
答案:(1) f(2)=-10
(2) 减函数、奇函数
设y=f(x)是定义域为R的函数且满足f(x)-f(y)=f(x-y),当x〈0时,f(x)>0,f(1)=-5.(1)
设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),且当f(1/3)=1 时,f(x)>0
设函数f(x)定义域为R,且满足f(xy)=f(x)+f(y),求f(0)与f(1)的值
设函数f x的定义域为R,对任意实数X.Y都有f(x+y)=f(x)+f(y),当x>0时f(x)>0且f(2)=3 1
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)*f(y)
定义域为R的函数f(x),满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(2)=1,证明函数f(x)
设函数f(x)定义域为R,且满足f(xy)=f(x)+f(y),则f(1/x)+f(x)=______
若定义域为R函数f(x)满足f(x+y)=2*f(x)*f(y),且f(0)不等于0,证明f(x)是偶函数
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意xy属于R,均有f(x+y)=f(x)f(y),试判断函数
设函数f x是定义域为R+,并且对定义域内的任意X,Y都满足f(xy)=f(x)+f(y),且当x>1f(x)
设函数f(X)是定义域在R上的函数,且对于任意实数x y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)