已知函数g(x)=a(x)的平-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 07:49:48
已知函数g(x)=a(x)的平-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1.
记f(x)=g(/x/).
(1)求实数a,b的值.
(2)若不等式f(log以2为底k)>f(2)成立,求实数k的取值范围
记f(x)=g(/x/).
(1)求实数a,b的值.
(2)若不等式f(log以2为底k)>f(2)成立,求实数k的取值范围
1,g(x)=ax²-2ax+1+b (a>0),在区间[2,3]内最大值为4,最小值为1,设f(x)=g(x)/x
由题知,
g(x)为二次函数,f(x)=g(/x/).
对称轴为x= -(-2a)/a = 2
因为 a>0,g(x)开口向上,
在区间[2,3]内递增,且f(x)=g(x).
最大值f(x)max = f(3) = 3a+1+b =4
最小值f(x)min = f(2) = 1+b =1
所以,a=1 b=0
2、f(log(2)k) >f(2),而 g(x)=x²-2x+1 log(2)k>0
所以,f(x) = g(|x|) =g(x)
令t=log(2)k,即f(t) > f(2)=1
t²-2t+1>1
t(t-2)>0
因为t>0 所以 t>2
亦即 log(2)k>2 log(2)k>log(2)4
因为 log(2)k 是增函数
所以k>4
即k∈(4,+∞,)
由题知,
g(x)为二次函数,f(x)=g(/x/).
对称轴为x= -(-2a)/a = 2
因为 a>0,g(x)开口向上,
在区间[2,3]内递增,且f(x)=g(x).
最大值f(x)max = f(3) = 3a+1+b =4
最小值f(x)min = f(2) = 1+b =1
所以,a=1 b=0
2、f(log(2)k) >f(2),而 g(x)=x²-2x+1 log(2)k>0
所以,f(x) = g(|x|) =g(x)
令t=log(2)k,即f(t) > f(2)=1
t²-2t+1>1
t(t-2)>0
因为t>0 所以 t>2
亦即 log(2)k>2 log(2)k>log(2)4
因为 log(2)k 是增函数
所以k>4
即k∈(4,+∞,)
已知函数g(x)=a(x)的平-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1.
已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|)
已知函数f(x)=x^2-2ax+2在区间[0,2]上的最小值记为g(a),最大值记为h(a)
已知f(x)=x^2-ax+a/2(a>0)在区间《0,1》上的最小值为g(a),求g(a)的最大值
若二次函数f(x)=x^2-ax+a/2在区间[0,1]上的最小值为g(a),求g(a)的最大值
已知f(x)=x^2-ax+a/2在区间《0,1》上的最大值为g(a),求g(a)的最小值
已知函数f(x)=x2-2ax-1在区间[0,2]上的最大值为g(a),最小值为h(a),a∈R。(1)求g(a)和h(
已知函数g(x)=ax²-2ax+1+b(a不等于0,b>1),在区间[2,3]上有最大值4,最小值1,设f(
函数,看不懂的题设f(x)=x^2-2ax+a在区间[-1,1]上最小值为g(a),求g(a)的最大值?
已知函数g(x)=ax²-2ax+1+b(a>0)在区间[0,3]上有最大值4和最小值1设f(x)=g(x)/
已知函数f(x)=x^3-3/2ax^2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2.
已知函数f(x)=x^2-ax+a/2(a大于0)在区间【0,1】上的最小值为g(a),