作业帮 > 数学 > 作业

求使得a,b的最小公倍数=1000,b,c的最小公倍数=2000,c,a的最小…

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 12:53:27
求使得a,b的最小公倍数=1000,b,c的最小公倍数=2000,c,a的最小…
求使得a,b的最小公倍数=1000,b,c的最小公倍数=2000,c,a的最小公倍数=2000的正整数的有序三数组(a,b,c)的个数.
求使得a,b的最小公倍数=1000,b,c的最小公倍数=2000,c,a的最小…
首先a、b、c都只能包含2和5两个因数,因为其最小公倍数便只有这两个因数
设a=2^a1*5^a2, b=2^b1*5^b2, c=2^c1*5^c2
a,b最小公倍数=2^3*5^3, 所以max(a1,b1)=3, max(a2,b2)=3 (max()表示两数中较大者)
同理,max(a1,c1)=4, max(a2,c2)=3, max(b1,c1)=4, max(b2,c2)=3
这样c1只能为4,a1、b1中较大者=3
1. 若a1=3,则b1=0、1、2、3;因为b>a,而b1已经小于或等于a1,所以b2一定大于a2,这样b2=3,a2=0、1、2;当b1=0、1时因为c1=4,c2可以为2或3均能保证c>b,而当b1=2、3时c2必须为3才能保证c>b,这样有2*3*2+2*3*1=18种组合
2. 若a1不为3,则b1=3,a1=0、1、2;又a2和b2中较大者为3
(1)若b2=3,则a2可以为0、1、2、3,而c2=3才能保证c>b,3*4=12种组合
(2)若b2不为3,则a2=3,唯一的可能是a1=0时b2可以为2,否则若a1=1或2,由于已知b1=3且a2=3,b2只要不为3就将有a>b.此时a1=0,a2=3; b1=3, b2=2; c1=4, c2可以为2或3,2种组合
所以一共有18+12+2=32种组合