记min{a,b}为a,b两数最小值,当正数x.y变化时,t=min{x,y/(x^2+y^2)}也在变化,则t的最大值
记min{a,b}为a,b两数最小值,当正数x.y变化时,t=min{x,y/(x^2+y^2)}也在变化,则t的最大值
(理)记max{a,b}为a,b两数的最大值,当正数x,y(x>y)变化时,t=max{x
用min(a,b,c)表示a,b,c三个数中的最小值,若y=min(x平方,x+2,10-x)(x≥0),则y的最大值为
用min{a,b,c}表示a、b、c三个数中的最小值,若y=min{x2,x+2,10-x}(x≥0),则y的最大值为_
用min{a,b}表示a,b两数中的最小值,若函数y=min{|x|,|x+t|}的图象关于直线x=−12对称,则t的值
记min{a,b,c}为a,b,c中最小值,若x,y是任意正实数,则M=min{x,1/y,y+1/x}的最大值为
用min{a,b,c}表示三个数a,b,c中的最小值,若y={x2,x+2,10-x}(x≥0),则y的最大值为()
定义min{x,y}为实数x,y中较小的数,已知h=min{a,b/(a^2+4b^2)},a,b均为正实数,h的最大值
用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{5-2|x|,x2-2x},则函数f(x)的最大值为
用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于x=−12
已知min{a,b}表示a,b两数种的最小值,若函数f(x)=min{ |x|,|x+t|}的图像的对称轴为x=-1/2
定义:min{x,y}为实数x,y中较小的数,已知h=min{a,b/(a+4b)}其中,a>0,b>0,则h的最大值是