作业帮 > 数学 > 作业

韩信点兵排5列余一人,排六列余五人,排七列余四人,排十一列余十人,求兵数.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 21:32:26
韩信点兵
排5列余一人,排六列余五人,排七列余四人,排十一列余十人,求兵数.
韩信点兵排5列余一人,排六列余五人,排七列余四人,排十一列余十人,求兵数.
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….刘邦茫然而不知其数.
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人).
中国有一本数学古书《孙子算经》也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」,答曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得二十三.
孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位.