设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:30:27
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
(1)f(0)=1⇒c=1,f(1)=4⇒a+b+c=4
∴f(x)=ax2+(3−a)x+1
f(x)≥4x即ax2−(a+1)x+1≥0恒成立得
由
a>0
(a+1)2−4a≤0⇒a=1
∴f(x)=x2+2x+1
(2)F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x)
由F(x)在区间[1,2]上是增函数得h(x)=-x2+(k-2)x在[1,2]上为增函数且恒正
故
k−2
2≥2
−1+k−2>0⇒k≥6,
实数k的取值范围k≥6.
∴f(x)=ax2+(3−a)x+1
f(x)≥4x即ax2−(a+1)x+1≥0恒成立得
由
a>0
(a+1)2−4a≤0⇒a=1
∴f(x)=x2+2x+1
(2)F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x)
由F(x)在区间[1,2]上是增函数得h(x)=-x2+(k-2)x在[1,2]上为增函数且恒正
故
k−2
2≥2
−1+k−2>0⇒k≥6,
实数k的取值范围k≥6.
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
求函数表达式设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意实数x,不等式f(x)≥4x
设二次函数f(x)=ax^2+bx+c的图像过点(0,1)和(1,4)且对于任意实数x,不等式f(x)≥4x恒成立求实数
设二次函数f(x)=aX2+bx+c的图象经过点(-1,0),且不等式x≤f(x)≤(1+x2)/2对任意X∈R恒成
设二次函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=0,对于任意的实数x都有f(x)-x≥0,*(1)证明
已知二次函数f(x)=ax^2+bx+1的图像过点(1,4),且对于任意实数x,不等式f(x)>=4x.(一)求函数解析
已知二次函数f(x)=aX2+bx+c的图象经过点(-1,0),且对一切实数x,不等式x≤f(x)≤(1+x2)/2恒成
1.设二次函数f(x)=ax²+bx+c的图像经过点(0,1)(1,4),且对于任意的实数x,不等式f(x)≥
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1
已知二次函数f(x)=ax2+bx+c(a∈Z)为偶函数,对于任意x∈R,f(x)≤1恒成立,且f(1)=0,则f(x)
已知二次函数f(x)=ax2+bx+1(a>0),若f(-1)=0,且对任意实数x均有f(x)≥0成立.且F(x)=f(
已知二次函数f(x)=ax2+bx+c,a、b、c∈R+,满足f(-1)=0,对于任意的实数