已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 03:08:55
已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们的一个焦点,则.
已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们的一个焦点,则三角形PF1F2的形状是.
已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们的一个焦点,则三角形PF1F2的形状是.
椭圆应是 X^2/m+y^2=1,a1=√m,b1=1,c=√(m-1),其中a1、b1是椭圆的长短半轴,
根据椭圆定义,|PF1|+|PF2|=2a1=2√m,(1)
双曲线实半轴a2=√n、虚半轴为b2=1,c=√(n+1)
根据双曲线定义,||PF1|-|PF2||=2a2=2√n,
这里设|PF1|>|PF2|,|PF1|-|PF2|=2√n,(2)
(1)和(2)式联立,
|PF1|=(√m+√n),
|PF2|=(√m-√n),
PF1^2+PF2^2=m+n-2√mn+m+n+2√mn
=2(m+n),
F1F2^2=(2c)^2=4(m-1)=4(n+1),
2F1F2^2=4m-4+4n-4=4m+4n,
F1F2^2=2(m+n)=PF1^2+PF2^2,
∴根据勾股逆定理,
三角形PF1F2是直角三角形.
根据椭圆定义,|PF1|+|PF2|=2a1=2√m,(1)
双曲线实半轴a2=√n、虚半轴为b2=1,c=√(n+1)
根据双曲线定义,||PF1|-|PF2||=2a2=2√n,
这里设|PF1|>|PF2|,|PF1|-|PF2|=2√n,(2)
(1)和(2)式联立,
|PF1|=(√m+√n),
|PF2|=(√m-√n),
PF1^2+PF2^2=m+n-2√mn+m+n+2√mn
=2(m+n),
F1F2^2=(2c)^2=4(m-1)=4(n+1),
2F1F2^2=4m-4+4n-4=4m+4n,
F1F2^2=2(m+n)=PF1^2+PF2^2,
∴根据勾股逆定理,
三角形PF1F2是直角三角形.
已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们
椭圆x^2/m^2+y^2=1(m>1)与双曲线x^2/n^2-y^2=1(n>0)有公共焦点F1,F2,P是他们的一个
已知椭圆x^2/m+y^2/p=1,与双曲线x^2/n-y^2/p=1(m>0,n>0,p>0)有公共的焦点F1,F2,
若椭圆x^2/m+y^2=1(m>1)与双曲线x^2/n-y^2=1有共同的焦点F1,F2,p是两曲线的一个交点,△F1
若双曲线x^2/m-y^2/n=1(m>0,n>0)和椭圆x^2/a+y^2/b=1(a>b>o)有相同的焦点F1,F2
若椭圆x^2/m+y^2/n=1与双曲线x^2/a-y^2/b=1有相同的焦点F1,F2,P是两条直线的一个交点
若椭圆x^2/m+y^2=1(m>1)和双曲线x^2/n-y^2=1有共同的焦点F1,F2,且P是两条曲线的一个交点
椭圆x^2/m^2+y^2=1(m>1)与双曲线x^2/n^2-y^2=1有公共的焦点F1,F2,P是它们的一个交点,求
若椭圆x^2/m+y^2=1(m>0)与双曲线x^2/n-y^2=1(n>0)有相同的焦点F1F2,P是两曲线的一个交点
椭圆x^2/a^2+y^2/b^2=1(焦点在x轴)与双曲线x^2/m^2-y^2/n^2=1有公共的焦点F1,F2
若椭圆X2/M2 +y2 =1(m>1)和双曲线 x2/n2 -y2=1(n>1)有相同焦点F1 、F2 ,P是两曲线的
若椭圆=1(a>b>0)和双曲线 =1(m>0,n>0)有相同焦点f1、f2,p为两曲线的一个交点,则|