已知P(4,4)为圆C:x^2+y^2=36内一点,做直线与圆相交于AB,PA*PB=0(向量)1.求弦AB中点轨迹方程
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:06:38
已知P(4,4)为圆C:x^2+y^2=36内一点,做直线与圆相交于AB,PA*PB=0(向量)1.求弦AB中点轨迹方程.
2.以PA和PB为领边做矩形AQBP,求点Q的轨迹方程.
3.若X,y满足点Q的轨迹方程,求M=X+Y的最值
2.以PA和PB为领边做矩形AQBP,求点Q的轨迹方程.
3.若X,y满足点Q的轨迹方程,求M=X+Y的最值
1.设AB的中点为N(x,y),则
ON⊥AB,
又PA*PB=0(向量),
∴PA⊥PB,
∴|PN|=|AN|
∴PN^2=OA^2-ON^2,
∴(x-4)^2+(y-4)^2=36-(x^2+y^2),
∴x^2+y^2-4x-4y-2=0,(1)
这就是N的轨迹方程.
2.矩形AQBP的中心为N,设Q的坐标为(x,y),
则N的坐标为((x+4)/2,(y+4)/2),
代入(1)*4,得(x+4)^2+(y+4)^2-8(x+4)-8(y+4)-8=0,
化简得x^2+y^2=40,这就是Q的轨迹方程.
3.由2,x=2√10cost,y=2√10sint,
∴M=x+y=2√10(cost+sint)=4√5sin(t+45°),
∴M的最大值=4√5,M的最小值=-4√5.
ON⊥AB,
又PA*PB=0(向量),
∴PA⊥PB,
∴|PN|=|AN|
∴PN^2=OA^2-ON^2,
∴(x-4)^2+(y-4)^2=36-(x^2+y^2),
∴x^2+y^2-4x-4y-2=0,(1)
这就是N的轨迹方程.
2.矩形AQBP的中心为N,设Q的坐标为(x,y),
则N的坐标为((x+4)/2,(y+4)/2),
代入(1)*4,得(x+4)^2+(y+4)^2-8(x+4)-8(y+4)-8=0,
化简得x^2+y^2=40,这就是Q的轨迹方程.
3.由2,x=2√10cost,y=2√10sint,
∴M=x+y=2√10(cost+sint)=4√5sin(t+45°),
∴M的最大值=4√5,M的最小值=-4√5.
已知P(4,4)为圆C:x^2+y^2=36内一点,做直线与圆相交于AB,PA*PB=0(向量)1.求弦AB中点轨迹方程
已知点P(2,2)是圆C:(x-1)^2+(y-2)^2=4内一点,直线l过点P与圆C交于AB两点.求AB中点M的轨迹方
已知过点M(-3,-3)的直线l与圆x∧2+y∧2+4y-21=0相交于A,B两点,设弦AB的中点为P,求P的轨迹方程(
经过圆x平方+y平方-4x+2y=0内一点p(1,-2)做弦AB,则AB的中点的轨迹方程为.
已知过点M(-3,-3)的直线l与圆x^2+y^2+4y-21=0相交于A,B两点.设弦AB的中点为P,求动点P的轨迹方
4.已知圆X^2+Y^2=16内一点C(3,0),AB为一动弦,且角ACB=90度,求AB中点P的轨迹方程
已知圆M:x^2+(y-2)^2=1,点P是x轴上的动点,PA、PB分别与圆M相切于A、B两点,求弦AB中点Q的轨迹方程
过圆x^2+y^2=5外一点P(4,0)作直线与圆相交于A,B两点,求弦AB的中点M的轨迹
已知动直线kx-y+2=0和圆x^2+y^2=1相交于A,B两点,求弦AB中点的轨迹方程.
已知动直线kx-y+1=0和圆x^2+y^2=1相交于A、B两点,求弦AB中点的轨迹方程.
已知直线x+y+m=0与圆x2+y2-8x=0相交于A,B,求弦AB的中点M的轨迹方程
已知直线l:y=kx+1.和圆C:(x-2)^2+(y-3)^2=1,相交于AB两点,求弦AB的中点M的轨迹方程 (2)