作业帮 > 数学 > 作业

已知函数y=f(x)是定义在区间[-32,32]上的偶函数,且x∈[0,32]时,f(x)=-x2-x+5.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 13:23:24
已知函数y=f(x)是定义在区间[-
3
2
已知函数y=f(x)是定义在区间[-32,32]上的偶函数,且x∈[0,32]时,f(x)=-x2-x+5.
解(1)当x∈[-
3
2,0]时,-x∈[0,
3
2].
∴f(-x)=-(-x)2-(-x)+5=-x2+x+5.又∵f(x)是偶函数,
∴f(x)=f(-x)=-x2+x+5.
∴f(x)=

−x2+x+5x∈[−
3
2,0]
−x2−x+5x∈(0
3
2].
(2)由题意,不妨设A点在第一象限,
坐标为(t,-t2-t+5),其中t∈(0,
3
2].
由图象对称性可知B点坐标为(-t,-t2-t+5).
则S(t)=S矩形ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
s′(t)=-6t2-4t+10.由s′(t)=0,得t1=-
5
3(舍去),t2=1.
当0<t<1时,s′(t)>0;t>1时,s′(t)<0.
∴S(t)在(0,1]上单调递增,在[1,
3
2]上单调递减.
∴当t=1时,矩形ABCD的面积取得极大值6,
且此极大值也是S(t)在t∈(0,
3
2]上的最大值.
从而当t=1时,矩形ABCD的面积取得最大值6.