作业帮 > 综合 > 作业

求奥数题(有答案和理论) 无论啥类型,附答案和理论的就可

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 15:43:05
求奥数题(有答案和理论) 无论啥类型,附答案和理论的就可
求奥数题(有答案和理论) 无论啥类型,附答案和理论的就可
1、我国有"三山五岳"之说,其中五岳是指:东岳泰山、南岳衡山、西岳华山、北岳恒山和中岳嵩山,一位老师拿着这五座山岳的图片,并在图片上标出数字,他让五位学生来辨别,每人说出两个,学生回答如下:甲:2是嵩山,3是华山, 乙:4是衡山,2是嵩山, 丙:1是衡山,5是恒山, 丁:4是恒山,3是嵩山, 戊:2是华山,5是泰山.
老师发现五个学生都只是说对了一半,那么正确的说法应该是什么呢?

假设甲的前半句正确,后半句错误,则2是泰山,3不是华山;因为每人都说对了半句,错了半句,因此可以推出戊说的前半句错误,后半句正确,即2不是华山,5是泰山.这就与甲说的"2是泰山"产生矛盾,所以假设错误.
因此我们可以知道,甲说的前半句错误,后半句正确,即3是华山;由戊说的可知,2不是华山,5是泰山;由丙说的可知,5不是泰山,1是衡山;由乙所说的可知,4不是衡山,2是嵩山;由丁所说的可知,3不是嵩山,4是恒山,所以正确的说法是:1是衡山,2是嵩山,3是华山,4是衡山,5是泰山.
2、六位数 是6的倍数,这样的六位数有多少个?
解 因为6=2×3,且2与3互质,所以这个整数既能被2整除又能被3整除.由六位数能被2整除,推知A可取0,2,4,6,8这五个值.再由六位数能被3整除,推知 3+A+B+A+B+A=3+3A+2B
能被3整除,故2B能被3整除.B可取0,3,6,9这4个值.由于B可以取4个值,A可以取5个值,题目没有要求A≠B,所以符合条件的六位数共有5×4=20(个).
3、从0,2,3,6,7这五个数码中选出四个,可以组成多少个可以被8整除的没有重复数字的四位数?
【分析】 16个.
提示:6320,3720,2360,2760,6032,3072,2736,7632,
7320,6720,7360,3760,7032,6072,2376,3672.
4、从前有三个和尚,一个讲真话,一个讲假话,另一个有时讲真话,有时讲假话.一天,一个智者遇到这三个和尚,他问第一位和尚:"你后面是哪位和尚?"和 尚回答:"讲真话的."他又问第二个和尚:"你是哪一位?"得到的回答:"有时讲真话,有时讲假话."他问第三位和尚:"你前面的是哪位和尚?"第三位和 尚回答说:"讲假话的."根据他们的回答,智者马上分清了他们各是哪一位和尚,请你说出智者的答案.
假设第一位和尚回答的是真话,即第二位和尚是"讲真话的"和尚,但第二位和尚却说自己是"有时讲真话,有时讲假话",这就引出了矛盾.所以第一位和尚回答的不是真话,即第二位和尚不是讲真话的和尚,当然他自己也不会是"讲真话的和尚",故只能是第三位和尚是讲真话的和尚.所 以第三位和尚回答的是真话,即第二位和尚是"讲假话的",由此可知,第一位和尚是有时讲真话,有时讲假话.
5、姐妹俩今年的年龄和是40岁,当姐姐像妹妹现在这样大时,妹妹的年龄恰好是姐姐年龄的一半.则姐姐今年多少岁.
姐妹俩的年龄分别是她们年龄差的3倍和2倍,即年龄比为3∶2,所

6、在一个圆环形的跑道上,甲、乙两人在同一地点沿相同方向跑时,每隔16分相遇一次,如果两人速度不变,两人在同一地点沿相反方向跑时,每隔8分相遇一次,则甲乙跑完一圈各需要多长时间?
假设路程为1份 ,甲乙的速度差为 ,甲乙的速度和为 ,快得的速度是 ,慢的速度是 ,跑完一圈各需要 分钟, 分钟
7、一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用多少小时.
水速:(210÷6)-25=10(千米/时)
返回原处所需要的时间:210÷(25-10)=14(小时).
8、46305乘以一个自然数a,乘积是一个整数的平方.求最小的a和这个整数.
a=3×5×7=105;46305×105=22052.
提示:完全平方数的所有质因数都是偶数次方.
9、如图,三角形ABC被分成了甲(阴影部分)、乙两部分, , , ,乙部分面积是甲部分面积的几倍?

连接 .
∵ ,
∴ ,
又∵ ,
∴ ,∴ , .
10、妈妈以每分钟 米的速度从家步行到单位上班, 分钟后,小华跑步从家追赶妈妈
结果在距家 米的地方追上妈妈.小华每分钟跑多少米?
分钟妈妈走了 (米),在小华追上妈妈的过程中,妈妈又走了 (米),妈妈走这一段的时间是: (分钟),即是小华追上妈妈的时间.又知道小华跑的路程是 米,然后根据速度=路程÷时间,就可以求出小华每分钟跑多少米,即:小华的速度: (米
11、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
【解】从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿).把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同
12、99张卡片上分别写着1~99.甲先从中抽走一张,然后乙再从中抽走一张,如此轮
下去.若最后的两张上的数是互质数,则甲胜;若最后剩下的两个数不是互质数,则乙胜.
问甲要想获胜应该怎样抽取卡片?
甲抽99,把剩下的数两两分组为(1,2)(3,4)…(97,98),无论乙抽何数,甲都抽同组中的另一个数.这样最后将剩下同一组中的两个数,这两数相邻必互质,甲胜.
13、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?
本题由中国古算名题“百僧分馍问题”演变而得.如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解.
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个).现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人).
同样,也可以假设100人都是小和尚,同学们不妨自己试试.
在下面的例题中,我们只给出一种假设方法.