x^2+2xy-y^2=7,求x^2+y^2最小值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 05:15:00
x^2+2xy-y^2=7,求x^2+y^2最小值
三个解法∶解法一:三角代换
设x=Rcost,y=Rsint,则x²+y²=R²
由已知x²+2xy-y²=7可得
R²【[cos²(2t)-sin²(2t)]+2sintcost】=7
R²【cos(2t)+sin(2t)】=7
R²·√2sin(2t+45°)=7
当sin(2t+45°)取最大值1时,x²+y²=R²有最小值(7/2)√2
注:asint+bcost=√(a²+b²) sin(t+γ) 【tanγ=b/a】
解法二:判别式法
设x²+y²=S,则x²+2xy-y²=7(x²+y²)/S
即 (S-7)x²+2Sxy-(S+7)y²=0
1)当y=0时,x²=7,x²+y²=S=7
2)当y≠0时,上式化为(S-7)(x/y)²+2S(x/y)-(S+7)=0 【两边同除以y²】
①S=7时,x²=7/5,y²=28/5
②S≠7时,△=4S²+4(S+7)(S-7)≥0
S²≥49/2,S≥(7/2)√2
所以x²+y²最小值(7/2)√2
解法三:利用待定系数法构造均值不等式
对2xy放缩:
2xy=2·(kx)·(y/k)≤k²x²+(y²/k²)
∴x²+k²x²+(y²/k²)-y²≥x²+2xy-y²=7
即 (k²+1)x²+[(1/k²)-1]y²≥7
构造 k²+1=(1/k²)-1,
即k²=√2-1时
有 √2x²+√2y²≥7
x²+y²≥(7/2)√2∴当(√2-1)x=y/(√2-1)时取等号
∴x²+y²最小值(7/2)√2
设x=Rcost,y=Rsint,则x²+y²=R²
由已知x²+2xy-y²=7可得
R²【[cos²(2t)-sin²(2t)]+2sintcost】=7
R²【cos(2t)+sin(2t)】=7
R²·√2sin(2t+45°)=7
当sin(2t+45°)取最大值1时,x²+y²=R²有最小值(7/2)√2
注:asint+bcost=√(a²+b²) sin(t+γ) 【tanγ=b/a】
解法二:判别式法
设x²+y²=S,则x²+2xy-y²=7(x²+y²)/S
即 (S-7)x²+2Sxy-(S+7)y²=0
1)当y=0时,x²=7,x²+y²=S=7
2)当y≠0时,上式化为(S-7)(x/y)²+2S(x/y)-(S+7)=0 【两边同除以y²】
①S=7时,x²=7/5,y²=28/5
②S≠7时,△=4S²+4(S+7)(S-7)≥0
S²≥49/2,S≥(7/2)√2
所以x²+y²最小值(7/2)√2
解法三:利用待定系数法构造均值不等式
对2xy放缩:
2xy=2·(kx)·(y/k)≤k²x²+(y²/k²)
∴x²+k²x²+(y²/k²)-y²≥x²+2xy-y²=7
即 (k²+1)x²+[(1/k²)-1]y²≥7
构造 k²+1=(1/k²)-1,
即k²=√2-1时
有 √2x²+√2y²≥7
x²+y²≥(7/2)√2∴当(√2-1)x=y/(√2-1)时取等号
∴x²+y²最小值(7/2)√2
已知x,y∈R*,x+y=xy,求u=x+2y最小值
2x+8y-xy=0(x>0,y>0),求x+y的最小值
已知x,y>0 2x+y+3=xy 求5x+4y最小值
若正实数x,y满足2x+y+6=xy,求xy的最小值.
x^2+2xy-y^2=7,求x^2+y^2最小值
正数x、y满足1/x+9/y=1 求xy的最小值?求x+2y的最小值?
设x>8,且xy=x+8y,求x+2y的最小值
2x+y+6=xy,xy为正实数,求xy最小值
已知xy>0,且X平方y=2,求x平方+xy的最小值
已知正数xy满足x+2y=2,求1/x+1/y的最小值
若正数x,y满足xy^2=4 ,求x+2y的最小值.
已知xy都是正数,若x+2y=3,求1/x+2/y最小值