数列问题, 设数列{an}的前n项和为Sn,a1=1,a2=2,a(n+2)=an+3,(n属于正整数),则S100等于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:20:48
数列问题, 设数列{an}的前n项和为Sn,a1=1,a2=2,a(n+2)=an+3,(n属于正整数),则S100等于什么?
A,7000 B=7250, C=7500, D=14950
要过程~谢谢!
A,7000 B=7250, C=7500, D=14950
要过程~谢谢!
选C
∵a[n+2]=a[n]+3 (n=1,2,3,...)
∴a[n+2]-a[n]=3
当n=2k-1(k=1,2,3,...),即n是奇数时:
∵a1=1
∴{a[2k-1]}是首项为1公差为3的等差数列
其通项公式是:a[m]=1+3(m-1)=3m-2
其前 m项和是:D[m]=m(1+3m-2)/2=m(3m-1)/2
∵项数m=(尾数-首数)/2+1=(n-1)/2+1=(n+1)/2
∴D[n]=(n+1)/2*[3(n+1)/2-1]/2=(n+1)(3n+1)/8
当n=2k(k=1,2,3,...),即n是偶数时:
∵a2=2
∴{a[2k]}是首项为2公差为3的等差数列
其通项公式是:a[m]=2+3(m-1)=3m-1
其前 m项和是:E[m]=m(2+3m-1)/2=m(3m+1)/2
∵项数m=(尾数-首数)/2+1=(n-2)/2+1=n/2
∴E[n]=n/2*(3n/2+1)/2=n(3n+2)/8
∴S[100]=D[99]+E[100]=3725+3775=7500
∵a[n+2]=a[n]+3 (n=1,2,3,...)
∴a[n+2]-a[n]=3
当n=2k-1(k=1,2,3,...),即n是奇数时:
∵a1=1
∴{a[2k-1]}是首项为1公差为3的等差数列
其通项公式是:a[m]=1+3(m-1)=3m-2
其前 m项和是:D[m]=m(1+3m-2)/2=m(3m-1)/2
∵项数m=(尾数-首数)/2+1=(n-1)/2+1=(n+1)/2
∴D[n]=(n+1)/2*[3(n+1)/2-1]/2=(n+1)(3n+1)/8
当n=2k(k=1,2,3,...),即n是偶数时:
∵a2=2
∴{a[2k]}是首项为2公差为3的等差数列
其通项公式是:a[m]=2+3(m-1)=3m-1
其前 m项和是:E[m]=m(2+3m-1)/2=m(3m+1)/2
∵项数m=(尾数-首数)/2+1=(n-2)/2+1=n/2
∴E[n]=n/2*(3n/2+1)/2=n(3n+2)/8
∴S[100]=D[99]+E[100]=3725+3775=7500
数列问题, 设数列{an}的前n项和为Sn,a1=1,a2=2,a(n+2)=an+3,(n属于正整数),则S100等于
3 数列{an}的通项公式an=(-1)^(n-1)*2n(n属于N*)设其前n项和为Sn,则S100=
数列的.设数列{an}的前n项和为Sn,已知a1=a,数列第(n+1)项=Sn+3^n,n属于正整数1.设bn=Sn-3
在数列{an}中,a1=1,a2=2,且A(n+1)-An=1+(-1)^n(n属于正整数),则S100=
已知数列an的前n项和为sn,且a1=1,a(n+1)=sn(n+2)/n,(n属于正整数)(1)求a2,a3,a4:
设数列{an}的前n项和为Sn,若a1=1,a(n+1)=(n+2/n)Sn(n属于正整数),证明:数列{Sn/n}是等
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
数列{an}的前几项和为Sn,a1=1,a(n+1)=2Sn(n属于正整数)
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
设数列an前n项和Sn已知a1=a2=1 bn=nSn+(n+2)an数列bn公差为d的等差数列n属于N...
高中数列难题.设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5