已知函数f(x)=(a-1/2)e^2x+x(a∈R).若在区间(0,+)上,函数f(x)的图象恒在曲线y=2ae^x下
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 00:06:01
已知函数f(x)=(a-1/2)e^2x+x(a∈R).若在区间(0,+)上,函数f(x)的图象恒在曲线y=2ae^x下方
求a的取值范围.及时回答有重赏.
求a的取值范围.及时回答有重赏.
已知函数f(x)=(a-1/2)e^2x+x(a∈R).若在区间(0,+)上,函数f(x)的图象恒在曲线y=2ae^x下方,求a的取值范围.
解析:∵函数f(x)=(a-1/2)e^2x+x(a∈R),在区间(0,+∞)上,函数f(x)的图象恒在曲线y=2ae^x下方
即2ae^x-f(x)>0恒成立
设g(x)=2ae^x-(a-1/2)e^(2x)-x
当a=0时
g(x)=1/2e^(2x)-x
令g’(x)=e^(2x)-1=0==>x=0
g’’(x)=2e^(2x)>0,∴g(x)在x=0处取极小值1/2>0
∴满足题意要求;
当ae^x=1或e^x=1/(2a-1)
∴x1=0,x2=-ln(2a-1)
g’’(x)=2ae^x-4(a-1/2)e^(2x)==> g’’(0)=2-2a
g’’(-ln(2a-1))=2a/(2a-1)-4(a-1/2)/(2a-1)^2=(4a^2-6a+2)/(2a-1)^2
∵a0,g(x)在x=0处取极小值g(0)=a+1/2
∴当-1/2e^x=1或e^x=1/(2a-1)
∴x1=0,x2=-ln(2a-1)
g’’(x)=2ae^x-4(a-1/2)e^(2x)==> g’’(0)=2-2a,g’’(-ln(2a-1))=2a/(2a-1)-4(a-1/2)/(2a-1)^2=(4a^2-6a+2)/(2a-1)^2
∵a>0
∴0
解析:∵函数f(x)=(a-1/2)e^2x+x(a∈R),在区间(0,+∞)上,函数f(x)的图象恒在曲线y=2ae^x下方
即2ae^x-f(x)>0恒成立
设g(x)=2ae^x-(a-1/2)e^(2x)-x
当a=0时
g(x)=1/2e^(2x)-x
令g’(x)=e^(2x)-1=0==>x=0
g’’(x)=2e^(2x)>0,∴g(x)在x=0处取极小值1/2>0
∴满足题意要求;
当ae^x=1或e^x=1/(2a-1)
∴x1=0,x2=-ln(2a-1)
g’’(x)=2ae^x-4(a-1/2)e^(2x)==> g’’(0)=2-2a
g’’(-ln(2a-1))=2a/(2a-1)-4(a-1/2)/(2a-1)^2=(4a^2-6a+2)/(2a-1)^2
∵a0,g(x)在x=0处取极小值g(0)=a+1/2
∴当-1/2e^x=1或e^x=1/(2a-1)
∴x1=0,x2=-ln(2a-1)
g’’(x)=2ae^x-4(a-1/2)e^(2x)==> g’’(0)=2-2a,g’’(-ln(2a-1))=2a/(2a-1)-4(a-1/2)/(2a-1)^2=(4a^2-6a+2)/(2a-1)^2
∵a>0
∴0
已知函数f(x)=(a-1/2)e^2x+x(a∈R).若在区间(0,+)上,函数f(x)的图象恒在曲线y=2ae^x下
已知a∈R,函数f(x)=x|x-a|,求函数y=f(x)在区间[1,2]上的最小值.
已知函数f(x)=2/x+alnx,a属于R 求函数在区间(0,e]上的最小值.
已知函数f(x)=2/x+αlnx,a∈R,求函数f(x)在区间(0,e]上的最小值
已知函数f(x)=ae^x-1/2x^2 1)若f(x)在R上为增函数,求a的取值;2)若a=1,求证:x>0时,f(x
1.已知函数f(x)=(ax-1)e^x,a属于R.(2)若函数f(x)在区间(0,1)上是单调增函数,求a的取值范围.
函数y=f(x)的图象是在R上连续不断的曲线,且f(1)•f(2)>0,则y=f(x)在区间[1,2]上( )
已知函数f(x)=2/x+alnx(a属于R)求函数f(x)在区间(0,e]的最小值
已知函数f(x)=x^2+a/x(x≠0,a∈R),判断函数f(x)的奇偶性?若f(x)在区间【2,+∞)上是增函数
已知函数f(x)=a/x+lnx-1,a∈R,若函数y=f(x+1/2)在x∈[0,e]上有两个零点,求实数a的取值范围
已知函数f(x) =lnx+2a/x,a∈R.讨论函数f(x)在 [1,2]上的单调性及单调区间.
已知a>0,函数f(x)=x|x-a|+1,x属于R 1.当a属于(0,3)时,求函数y=f(x)在闭区间1,2上的最小