如图,抛物线y=ax^2+bx+c顶点C(1,4),交x轴于A,B两点,交y轴于D,B点坐标(3,0),在抛物线上是否存
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:23:35
如图,抛物线y=ax^2+bx+c顶点C(1,4),交x轴于A,B两点,交y轴于D,B点坐标(3,0),在抛物线上是否存在一点T,过点T做X轴的垂线,垂足为点M,过点M做MN平行于BD,交线段AD于点N,连接MD,使△DNM与△BMD相似,求点T坐标,
y=ax^2+bx+c=a[x+(b/2a)]^2+(4ac-b^2)/(4a)=a(x-1)^2+4
B(3,0)
0=a(3-1)^2+4,-b/(2a)=1,(4ac-b^2)/(4a)=4
a=-1,b=2,c=3
y=-x^2+2x+3
A(-1,0),B(3,0),D(0,3)
T[e,(3-e^2+2e)],M(e,0)
k(MN)=k(BD)=-1
MN:y=-x+e
-x+e=-x^2+2x+3
x^2+3x+e-3=0
xN= ,yN=
|MN|= ,|MD|= ,BD=3√2
|MD|^2=|MN|*|BD|
e=,
T( )
B(3,0)
0=a(3-1)^2+4,-b/(2a)=1,(4ac-b^2)/(4a)=4
a=-1,b=2,c=3
y=-x^2+2x+3
A(-1,0),B(3,0),D(0,3)
T[e,(3-e^2+2e)],M(e,0)
k(MN)=k(BD)=-1
MN:y=-x+e
-x+e=-x^2+2x+3
x^2+3x+e-3=0
xN= ,yN=
|MN|= ,|MD|= ,BD=3√2
|MD|^2=|MN|*|BD|
e=,
T( )
如图,抛物线y=ax^2+bx+c顶点C(1,4),交x轴于A,B两点,交y轴于D,B点坐标(3,0),在抛物线上是否存
如图,抛物线y=ax^2+bx+c与x轴交于A,D两点,与y轴交于点c,抛物线的顶点b在第一象限,若点A的坐标为(1,0
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
如图 已知抛物线y=ax²+bx+c.顶点坐标为(2,-1)且与Y轴交于点(0,3)与x轴交于A B两点
如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的坐标(2)
如图,已知抛物线y=ax平方+bx-2(a不等0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(
如图1 抛物线y=ax2+bx+c的顶点为(1,4)交x轴于AB两点 交y轴于点D 其中B点的坐标为(3,0) 1.求抛
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
如图,抛物线y=ax平方+bx+c交x轴于a、b两点,交y轴于点c,对称轴为直线x=1,a点坐标为(-1,0)求b点坐标