1.在凸4n+2边形A1A2A3 …… A[sub]4n+2 中,每一个内角都是30度的整数倍,且A1 =A2 =A3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:31:06
1.在凸4n+2边形A1A2A3 …… A[sub]4n+2 中,每一个内角都是30度的整数倍,且A1 =A2 =A3 =90度,则n=?
2.不等边三角形ABC的两条高的长度分别是4和12,若第三条高及三边均为整数,求当第三条高取得最大值时,三角形ABC的周长的最小值
3.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角度数的1/4,求满足此条件的所有锐角三角形
4.周长为30,各边长互不相等且都是整数的三角形有多少个?(注明每个三角形的各边长)
5.用正方形的地砖不重叠,无缝隙地铺满一块地,选用边长为x cm规格的地砖,恰需n块;若选用边长为y cm规格的地砖,则要比前一种刚好多用124块,已知x、y、n都是整数,且x、y互质,试问这块地有多少平方米?
2.不等边三角形ABC的两条高的长度分别是4和12,若第三条高及三边均为整数,求当第三条高取得最大值时,三角形ABC的周长的最小值
3.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角度数的1/4,求满足此条件的所有锐角三角形
4.周长为30,各边长互不相等且都是整数的三角形有多少个?(注明每个三角形的各边长)
5.用正方形的地砖不重叠,无缝隙地铺满一块地,选用边长为x cm规格的地砖,恰需n块;若选用边长为y cm规格的地砖,则要比前一种刚好多用124块,已知x、y、n都是整数,且x、y互质,试问这块地有多少平方米?
1、在凸多边形,其每个内角小于180度,由于它是30度的整数倍,所以其内角最大为150度.
题中要求的4n+2边形,其内角和就小于:90*3+(4n+2-3)*150
而4n+2边形的内角和等于:(4n+2-2)*180度,所以有:
(4n+2-2)*180≤90*3+(4n+2-3)*150
解得n≤1.
而n
题中要求的4n+2边形,其内角和就小于:90*3+(4n+2-3)*150
而4n+2边形的内角和等于:(4n+2-2)*180度,所以有:
(4n+2-2)*180≤90*3+(4n+2-3)*150
解得n≤1.
而n
1.在凸4n+2边形A1A2A3 …… A[sub]4n+2 中,每一个内角都是30度的整数倍,且A1 =A2 =A3
已知凸n边形a1a2.an(n>4)的所有内角都是15度的整数倍,且角a1+角a2+角a3=285度,其余各内角都相等,
设a1,a2,a3,…,an(n∈N*)都是正数,且a1a2a3•…an=1,试用数学归纳法证明:a1+a2+a3+…+
已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n
在数列{an}中,a1=1/3,且前n项的算术平均数等于第n项的2n-1倍(n属于N*),即n/a1+a2+a3+.+a
整数数列{An}满足 A1*A2+A2*A3+…+A(n-1)*An=(n-1)*n*(n+1)/3 ,(n=2,3,…
在数列{an}中,a1=2010,且对任意正整数,都有a(n+2)=a(n+1)-an,则a2+a3+a4+……+a20
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
设等比数列{an}的前n项和为sn,若s2n=4(a1+a3+l+a(2n-1),a1a2a3=8,则a5=
数列{an}中,a1=1,对所有a大于等于2,n属于整数,都有 a1*a2*a3* .*an =n^2 ,则a3+a5=
在等差数列{a n}中,公差为1/2,且a1+a3+a5+.+a99=60,则a1+a2+a3+a4+.+a100等于多
问高二数列题1.等比数列中,已知对任意正整数n,a1+a2+a3+……+an=2的n次方-1,则a1²+a2&